Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells

  • George Kolios
  • Vassilis Valatas
  • Pinelopi Manousou
  • Costas Xidakis
  • George Notas
  • Elias Kouroumalis


Nitric oxide (NO) and Monocyte Chemoattractant Protein (MCP)-1 co-regulation has been found in endotoxin-activated macrophages. Kupffer cells (KC) are a main source of soluble-mediators production in liver abnormalities. We investigated in vitro similar co-regulation of NO and MCP-1 production in rat activated KC. Isolated rat KC were cultured in the presence of 1 μg/ml LPS and various concentrations of Wortmannin (0–300 nM), L-NAME (0–500 μM) or MCP-1 (0–100 ng/ml). Production of MCP-1 and NO were measured in supernatants, by ELISA and a modification of the Griess reaction, respectively. Growth arrested KC, stimulated with vehicle, produced a basal amount of NO and MCP-1. In the presence of LPS, cultured KC secreted significantly (P < 0.01) increased amounts of MCP-1 and NO. Pre-treatment of KC with various concentrations of L-NAME significantly (P < 0.05) reduced the LPS-induced secretion of NO in a concentration dependent manner, but the MCP-1 production remained unaffected. Pre-treatment with Wortmannin significantly (P < 0.05) inhibited LPS-induced secretion of MCP-1 and NO in a concentration dependent manner. Linear regression analysis revealed a positive correlation between MCP-1 and NO in the LPS (r = 0.59171, P < 0.0001) and Wortmannin (r = 0.9215, P = 0.009) treated groups, but not in the L-NAME (r = −0.08513, P = 0.873). Incubation of KC with various concentrations of MCP-1 did not increase the NO production. These results indicate that KC might be the main source of NO and MCP-1 production in liver disorders, probably through the induction of PI3-kinase(s) and without any co-regulation between these molecules, which might represent two independent immunoregulatory pathways in the role of KC in hepatic disorders.


Nitric oxide MCP-1 Chemokine(s) Kupffer cells Sinusoidal cell(s) Liver 


  1. 1.
    Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420PubMedGoogle Scholar
  2. 2.
    Su GL (2002) Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 283:G256–G265PubMedGoogle Scholar
  3. 3.
    Liu P, McGuire GM, Fisher MA, Farhood A, Smith CW, Jaeschke H (1995) Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock 3:56–62. doi: 10.1097/00024382-199506000-00008 PubMedCrossRefGoogle Scholar
  4. 4.
    Han DW (2002) Intestinal endotoxemia as a pathogenetic mechanism in liver failure. World J Gastroenterol 8:961–965PubMedGoogle Scholar
  5. 5.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  6. 6.
    Rockey DC, Shah V (2004) Nitric oxide biology and the liver: report of an AASLD research workshop. Hepatology 39:250–257. doi: 10.1002/hep.20034 PubMedCrossRefGoogle Scholar
  7. 7.
    Sass G, Koerber K, Bang R, Guehring H, Tiegs G (2001) Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest 107:439–447. doi: 10.1172/JCI10613 PubMedCrossRefGoogle Scholar
  8. 8.
    Nadler EP, Dickinson EC, Beer-Stolz D, Alber SM, Watkins SC, Pratt DW et al (2001) Scavenging nitric oxide reduces hepatocellular injury after endotoxin challenge. Am J Physiol Gastrointest Liver Physiol 281:G173–G181PubMedGoogle Scholar
  9. 9.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621. doi: 10.1056/NEJMra052723 PubMedCrossRefGoogle Scholar
  10. 10.
    Bone-Larson CL, Simpson KJ, Colletti LM, Lukacs NW, Chen SC, Lira S et al (2000) The role of chemokines in the immunopathology of the liver. Immunol Rev 177:8–20. doi: 10.1034/j.1600-065X.2000.17703.x PubMedCrossRefGoogle Scholar
  11. 11.
    Marra F (2002) Chemokines in liver inflammation and fibrosis. Front Biosci 7:d1899–d1914PubMedCrossRefGoogle Scholar
  12. 12.
    Duryee MJ, Klassen LW, Freeman TL, Willis MS, Tuma DJ, Thiele GM (2004) Lipopolysaccharide is a cofactor for malondialdehyde-acetaldehyde adduct-mediated cytokine/chemokine release by rat sinusoidal liver endothelial and Kupffer cells. Alcohol Clin Exp Res 28:1931–1938. doi: 10.1097/01.ALC.0000148115.90045.C5 PubMedCrossRefGoogle Scholar
  13. 13.
    Hildebrand F, Hubbard WJ, Choudhry MA, Frink M, Pape HC, Kunkel SL et al (2006) Kupffer cells and their mediators: the culprits in producing distant organ damage after trauma-hemorrhage. Am J Pathol 169:784–794. doi: 10.2353/ajpath.2006.060010 PubMedCrossRefGoogle Scholar
  14. 14.
    Tukov FF, Maddox JF, Amacher DE, Bobrowski WF, Roth RA, Ganey PE (2006) Modeling inflammation-drug interactions in vitro: a rat Kupffer cell-hepatocyte coculture system. Toxicol In Vitro 20:1488–1499PubMedCrossRefGoogle Scholar
  15. 15.
    Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, Choudhry MA et al (2007) The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol 210:667–675. doi: 10.1002/jcp.20860 PubMedCrossRefGoogle Scholar
  16. 16.
    Valatas V, Kolios G, Manousou P, Notas G, Xidakis C, Diamantis I et al (2004) Octreotide regulates CC but not CXC LPS-induced chemokine secretion in rat Kupffer cells. Br J Pharmacol 141:477–487. doi: 10.1038/sj.bjp.0705633 PubMedCrossRefGoogle Scholar
  17. 17.
    Guo HT, Cai CQ, Schroeder RA, Kuo PC (2002) Nitric oxide is necessary for CC-class chemokine expression in endotoxin-stimulated ANA-1 murine macrophages. Immunol Lett 80:21–26. doi: 10.1016/S0165-2478(01)00284-X PubMedCrossRefGoogle Scholar
  18. 18.
    Murao K, Ohyama T, Imachi H, Ishida T, Cao WM, Namihira H et al (2000) TNF-alpha stimulation of MCP-1 expression is mediated by the Akt/PKB signal transduction pathway in vascular endothelial cells. Biochem Biophys Res Commun 276:791–796. doi: 10.1006/bbrc.2000.3497 PubMedCrossRefGoogle Scholar
  19. 19.
    Biswas SK, Sodhi A, Paul S (2001) Regulation of nitric oxide production by murine peritoneal macrophages treated in vitro with chemokine monocyte chemoattractant protein 1. Nitric Oxide 5:566–579. doi: 10.1006/niox.2001.0370 PubMedCrossRefGoogle Scholar
  20. 20.
    Okuma T, Terasaki Y, Sakashita N, Kaikita K, Kobayashi H, Hayasaki T et al (2006) MCP-1/CCR2 signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxide production. Int J Exp Pathol 87:475–483. doi: 10.1111/j.1365-2613.2006.00502.x PubMedCrossRefGoogle Scholar
  21. 21.
    Valatas V, Xidakis C, Roumpaki H, Kolios G, Kouroumalis EA (2003) Isolation of rat Kupffer cells: a combined methodology for highly purified primary cultures. Cell Biol Int 27:67–73. doi: 10.1016/S1065-6995(02)00249-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902. doi: 10.1126/science.1281928 PubMedCrossRefGoogle Scholar
  23. 23.
    Matrella E, Valatas V, Notas G, Roumpaki H, Xidakis C, Hadzidakis A et al (2001) Bolus somatostatin but not octreotide reduces hepatic sinusoidal pressure by a NO-independent mechanism in chronic liver disease. Aliment Pharmacol Ther 15:857–864. doi: 10.1046/j.1365-2036.2001.00996.x PubMedCrossRefGoogle Scholar
  24. 24.
    Valatas V, Kolios G, Manousou P, Xidakis C, Notas G, Ljumovic D et al (2004) Secretion of inflammatory mediators by isolated rat Kupffer cells: the effect of octreotide. Regul Pept 120:215–225. doi: 10.1016/j.regpep.2004.03.009 PubMedCrossRefGoogle Scholar
  25. 25.
    Stevanin TM, Laver JR, Poole RK, Moir JW, Read RC (2007) Metabolism of nitric oxide by Neisseria meningitidis modifies release of NO-regulated cytokines and chemokines by human macrophages. Microbes Infect 9:981–987. doi: 10.1016/j.micinf.2007.04.002 PubMedCrossRefGoogle Scholar
  26. 26.
    Muhl H, Chang JH, Huwiler A, Bosmann M, Paulukat J, Ninic R et al (2000) Nitric oxide augments release of chemokines from monocytic U937 cells: modulation by anti-inflammatory pathways. Free Radic Biol Med 29:969–980. doi: 10.1016/S0891-5849(00)00389-0 PubMedCrossRefGoogle Scholar
  27. 27.
    Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A et al (2007) Nitric oxide donor upregulation of SDF1/CXCR4 enhances BMSC, migration into ischemic brain after stroke. Stem Cells 25:2777–2785. doi: 10.1634/stemcells.2007-0169 PubMedCrossRefGoogle Scholar
  28. 28.
    Trifilieff A, Fujitani Y, Mentz F, Dugas B, Fuentes M, Bertrand C (2000) Inducible nitric oxide synthase inhibitors suppress airway inflammation in mice through down-regulation of chemokine expression. J Immunol 165:1526–1533PubMedGoogle Scholar
  29. 29.
    Marion R, Coeffier M, Lemoulan S, Gargala G, Ducrotte P, Dechelotte P (2005) L-Arginine modulates CXC chemokines in the human intestinal epithelial cell line HCT-8 by the NO pathway. Biochimie 87:1048–1055. doi: 10.1016/j.biochi.2005.06.009 PubMedCrossRefGoogle Scholar
  30. 30.
    Martinez-Mier G, Toledo-Pereyra LH, McDuffie JE, Warner RL, Hsiao C, Stapleton SR et al (2002) Exogenous nitric oxide downregulates MIP-2 and MIP-1alpha chemokines and MAPK p44/42 after ischemia and reperfusion of the rat kidney. J Invest Surg 15:287–296. doi: 10.1080/08941930290086083 PubMedCrossRefGoogle Scholar
  31. 31.
    Desai A, Miller MJ, Huang X, Warren JS (2003) Nitric oxide modulates MCP-1 expression in endothelial cells: implications for the pathogenesis of pulmonary granulomatous vasculitis. Inflammation 27:213–223. doi: 10.1023/A:1025036530605 PubMedCrossRefGoogle Scholar
  32. 32.
    Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP (1997) Nitric oxide regulates monocyte chemotactic protein-1. Circulation 96:934–940PubMedGoogle Scholar
  33. 33.
    Hayasaki T, Kaikita K, Okuma T, Yamamoto E, Kuziel WA, Ogawa H et al (2006) CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ J 70:342–351. doi: 10.1253/circj.70.342 PubMedCrossRefGoogle Scholar
  34. 34.
    Kolios G, Wright KL, Jordan NJ, Leithead BJ, Robertson DAF, Westwick J (1999) C-X-C and C-C chemokine expression and secretion by the human colonic epithelial cell line, HT-29: differential effect of T-lymphocyte derived cytokines. Eur J Immunol 29:530–536. doi:10.1002/(SICI)1521-4141(199902)29:02<530::AID-IMMU530>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  35. 35.
    Kim YH, Choi KH, Park JW, Kwon TK (2005) LY294002 inhibits LPS-induced NO production through a inhibition of NF-kappaB activation: independent mechanism of phosphatidylinositol 3-kinase. Immunol Lett 99:45–50. doi: 10.1016/j.imlet.2004.12.007 PubMedCrossRefGoogle Scholar
  36. 36.
    Parratt JR (1997) Nitric oxide. A key mediator in sepsis and endotoxaemia? J Physiol Pharmacol 48:493–506PubMedGoogle Scholar
  37. 37.
    Van Amersfoort ES, Van Berkel TJ, Kuiper J (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16:379–414. doi: 10.1128/CMR.16.3.379-414.2003 PubMedCrossRefGoogle Scholar
  38. 38.
    Lucchi NW, Moore JM (2007) LPS induces secretion of chemokines by human syncytiotrophoblast cells in a MAPK-dependent manner. J Reprod Immunol 73:20–27. doi: 10.1016/j.jri.2006.05.005 PubMedCrossRefGoogle Scholar
  39. 39.
    Racanelli V, Rehermann B (2006) The liver as an immunological organ. Hepatology 43:S54–S62. doi: 10.1002/hep.21060 PubMedCrossRefGoogle Scholar
  40. 40.
    Winwood PJ, Arthur MJ (1993) Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis 13:50–59PubMedCrossRefGoogle Scholar
  41. 41.
    Dong Z, Wei H, Sun R, Tian Z (2007) The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol 4:241–252PubMedGoogle Scholar
  42. 42.
    van der Bij GJ, Oosterling SJ, Meijer S, Beelen RH, van Egmond M (2005) Therapeutic potential of Kupffer cells in prevention of liver metastases outgrowth. Immunobiology 210:259–265. doi: 10.1016/j.imbio.2005.05.020 PubMedCrossRefGoogle Scholar
  43. 43.
    Nolan JP (1981) Endotoxin, reticuloendothelial function, and liver injury. Hepatology 1:458–465. doi: 10.1002/hep.1840010516 PubMedCrossRefGoogle Scholar
  44. 44.
    Gregory SH, Wing EJ (2002) Neutrophil-Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J Leukoc Biol 72:239–248PubMedGoogle Scholar
  45. 45.
    Adams DH, Hubscher SG (2006) Systemic viral infections and collateral damage in the liver. Am J Pathol 168:1057–1059. doi: 10.2353/ajpath.2006.051296 PubMedCrossRefGoogle Scholar
  46. 46.
    Jaeschke H, Bajt ML (2004) Critical role of CXC chemokines in endotoxemic liver injury in mice. J Leukoc Biol 76:1089–1090. doi: 10.1189/jlb.0504309 PubMedCrossRefGoogle Scholar
  47. 47.
    Roberts LR (2005) Chemokines as attractive targets in liver carcinogenesis. Am J Gastroenterol 100:499–501. doi: 10.1111/j.1572-0241.2005.t01-4-41219.x PubMedCrossRefGoogle Scholar
  48. 48.
    Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505. doi: 10.1172/JCI26498 PubMedCrossRefGoogle Scholar
  49. 49.
    Kanno K, Tazuma S, Nishioka T, Hyogo H, Chayama K (2005) Angiotensin II participates in hepatic inflammation and fibrosis through MCP-1 expression. Dig Dis Sci 50:942–948. doi: 10.1007/s10620-005-2669-7 PubMedCrossRefGoogle Scholar
  50. 50.
    Muhlbauer M, Bosserhoff AK, Hartmann A, Thasler WE, Weiss TS, Herfarth H et al (2003) A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 125:1085–1093. doi: 10.1016/S0016-5085(03)01213-7 PubMedCrossRefGoogle Scholar
  51. 51.
    Czaja MJ, Geerts A, Xu J, Schmiedeberg P, Ju Y (1994) Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. J Leukoc Biol 55:120–126PubMedGoogle Scholar
  52. 52.
    Nikolic J, Stojanovic I, Pavlovic R, Sokolovic D, Bjelakovic G, Beninati S (2007) The role of L-arginine in toxic liver failure: interrelation of arginase, polyamine catabolic enzymes and nitric oxide synthase. Amino Acids 32:127–131. doi: 10.1007/s00726-006-0309-y PubMedCrossRefGoogle Scholar
  53. 53.
    Veihelmann A, Brill T, Blobner M, Scheller I, Mayer B, Prolls M et al (1997) Inhibition of nitric oxide synthesis improves detoxication in inflammatory liver dysfunction in vivo. Am J Physiol 273:G530–G536PubMedGoogle Scholar
  54. 54.
    Kershenobich Stalnikowitz D, Weissbrod AB (2003) Liver fibrosis and inflammation. A review. Ann Hepatol 2:159–163PubMedGoogle Scholar
  55. 55.
    Mojena M, Hortelano S, Castrillo A, Diaz-Guerra MJ, Garcia-Barchino MJ, Saez GT et al (2001) Protection by nitric oxide against liver inflammatory injury in animals carrying a nitric oxide synthase-2 transgene. FASEB J 15:583–585PubMedGoogle Scholar
  56. 56.
    Hines IN, Harada H, Flores S, Gao B, McCord JM, Grisham MB (2005) Endothelial nitric oxide synthase protects the post-ischemic liver: potential interactions with superoxide. Biomed Pharmacother 59:183–189. doi: 10.1016/j.biopha.2005.03.011 PubMedCrossRefGoogle Scholar
  57. 57.
    Hsu CM, Wang JS, Liu CH, Chen LW (2002) Kupffer cells protect liver from ischemia-reperfusion injury by an inducible nitric oxide synthase-dependent mechanism. Shock 17:280–285. doi: 10.1097/00024382-200204000-00007 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • George Kolios
    • 1
  • Vassilis Valatas
    • 1
  • Pinelopi Manousou
    • 1
  • Costas Xidakis
    • 1
  • George Notas
    • 1
  • Elias Kouroumalis
    • 1
  1. 1.Department of Gastroenterology, Faculty of MedicineUniversity of CreteCreteGreece

Personalised recommendations