Molecular and Cellular Biochemistry

, Volume 319, Issue 1–2, pp 9–15 | Cite as

Sodium butyrate-induced upregulation of p18 INK4C gene affects K562 cell G0/G1 arrest and differentiation

  • Lin Li
  • Guoping Zhang
  • Ye Zhang
  • Jiang Tan
  • Hui Huang
  • Baiqu Huang
  • Jun LuEmail author


Histone deacetylase inhibitor sodium butyrate (NaBu) can induce G0/G1 arrest and erythroid differentiation in K562 cells, but the molecular mechanisms underlying this process are unclear. Here we show that both p18 INK4C mRNA and protein levels were upregulated during K562 cell erythroid differentiation induced by NaBu. Moreover, the NaBu activation of p18 INK4C was dependent on the integrity of Sp1 clusters in the promoter. NaBu caused hyperacetylation of histones H3 and H4 on endogenous p18 INK4C promoter and enhanced binding of transcription factor Sp1 in vivo. Also, overexpression of p18 INK4C in K562 cells resulted in G0/G1 arrest and partial erythroid differentiation. Our results suggested that NaBu-mediated p18 INK4C regulation played a role in cell cycle arrest and erythroid differentiation in K562 cells.


p18INK4C Sodium butyrate K562 erythroid differentiation Sp1 



Cyclin-dependent kinase


Chromatin immunoprecipitation


Cyclin-dependent kinase inhibitor


Histone acetyltransferase


Histone deacetylase


Sodium butyrate



We thank Dr. Blais (Centre Hospitalier Universitaire de Quebec, Canada) for providing plasmids. This work was supported by grants from The National Basic Research Program of China (2005CB522404, 2006CB910506), the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in Universities (IRT0519), and the National Natural Science Foundation of China (30771232, 30671184).


  1. 1.
    Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23:4225–4231. doi: 10.1038/sj.onc.1207118 PubMedCrossRefGoogle Scholar
  2. 2.
    Wolffe AP (2001) Chromatin remodeling: why it is important in cancer. Oncogene 20:2988–2990. doi: 10.1038/sj.onc.1204322 PubMedCrossRefGoogle Scholar
  3. 3.
    Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216. doi: 10.1093/jnci/92.15.1210 PubMedCrossRefGoogle Scholar
  4. 4.
    Chen B, Cepko CL (2007) Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. BMC Dev Biol 7:78. doi: 10.1186/1471-213X-7-78 PubMedCrossRefGoogle Scholar
  5. 5.
    Wu ZQ, Zhang R, Chao C et al (2007) Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell. Chin Med J (Engl) 120:2112–2118Google Scholar
  6. 6.
    Takai N, Ueda T, Nishida M et al (2008) Histone deacetylase inhibitors induce growth inhibition, cell cycle arrest and apoptosis in human choriocarcinoma cells. Int J Mol Med 21:109–115PubMedGoogle Scholar
  7. 7.
    Budillon A, Di Gennaro E, Bruzzese F et al (2007) Histone deacetylase inhibitors: a new wave of molecular targeted anticancer agents. Recent Patents Anticancer Drug Discov 2:119–134PubMedCrossRefGoogle Scholar
  8. 8.
    Witt O, Sand K, Pekrun A (2000) Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood 95:2391–2396PubMedGoogle Scholar
  9. 9.
    Cioe L, McNab A, Hubbell HR et al (1981) Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res 41:237–243PubMedGoogle Scholar
  10. 10.
    Chen TH, Chen WM, Hsu KH et al (2007) Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 355:913–918. doi: 10.1016/j.bbrc.2007.02.057 PubMedCrossRefGoogle Scholar
  11. 11.
    Andersson LC, Jokinen M, Gahmberg CG (1979) Induction of erythroid differentiation in the human leukaemia cell line K562. Nature 278:364–365. doi: 10.1038/278364a0 PubMedCrossRefGoogle Scholar
  12. 12.
    Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18:2699–2711. doi: 10.1101/gad.1256504 PubMedCrossRefGoogle Scholar
  13. 13.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512. doi: 10.1101/gad.13.12.1501 PubMedCrossRefGoogle Scholar
  14. 14.
    Thullberg M, Bartkova J, Khan S et al (2000) Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett 470:161–166. doi: 10.1016/S0014-5793(00)01307-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Nakayama K, Nakayama K (1998) Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. Bioessays 20:1020–1029. doi:10.1002/(SICI)1521-1878(199812)20:12<1020::AID-BIES8>3.0.CO;2-DPubMedCrossRefGoogle Scholar
  16. 16.
    Lewis JL, Chinswangwatanakul W, Zheng B et al (2001) The influence of INK4 proteins on growth and self-renewal kinetics of hematopoietic progenitor cells. Blood 97:2604–2610. doi: 10.1182/blood.V97.9.2604 PubMedCrossRefGoogle Scholar
  17. 17.
    Munoz-Alonso MJ, Acosta JC, Richard C et al (2005) p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 280:18120–18129. doi: 10.1074/jbc.M500758200 PubMedCrossRefGoogle Scholar
  18. 18.
    Schrantz N, Beney GE, Auffredou MT et al (2000) The expression of p18INK4 and p27kip1 cyclin-dependent kinase inhibitors is regulated differently during human B cell differentiation. J Immunol 165:4346–4352PubMedGoogle Scholar
  19. 19.
    Zindy F, Soares H, Herzog KH et al (1997) Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Differ 8:1139–1150PubMedGoogle Scholar
  20. 20.
    Gursky S, Olopade OI, Rowley JD (2001) Identification of a 1.2 Kb cDNA fragment from a region on 9p21 commonly deleted in multiple tumor types. Cancer Genet Cytogenet 129:93–101. doi: 10.1016/S0165-4608(01)00444-7 PubMedCrossRefGoogle Scholar
  21. 21.
    Blais A, Monte D, Pouliot F et al (2002) Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2F1 and Sp1. J Biol Chem 277:31679–31693. doi: 10.1074/jbc.M204554200 PubMedCrossRefGoogle Scholar
  22. 22.
    Franklin DS, Xiong Y (1996) Induction of p18INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol Biol Cell 7:1587–1599PubMedGoogle Scholar
  23. 23.
    Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5:245–253PubMedGoogle Scholar
  24. 24.
    Cao H, Stamatoyannopoulos G, Jung M (2004) Induction of human gamma globin gene expression by histone deacetylase inhibitors. Blood 103:701–709. doi: 10.1182/blood-2003-02-0478 PubMedCrossRefGoogle Scholar
  25. 25.
    Pestell RG, Albanese C, Reutens AT et al (1999) The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 20:501–534. doi: 10.1210/er.20.4.501 PubMedCrossRefGoogle Scholar
  26. 26.
    Yokota T, Matsuzaki Y, Sakai T (2004) Trichostatin A activates p18INK4c gene: differential activation and cooperation with p19INK4d gene. FEBS Lett 574:171–175. doi: 10.1016/j.febslet.2004.08.025 PubMedCrossRefGoogle Scholar
  27. 27.
    Rylski M, Welch JJ, Chen YY et al (2003) GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 23:5031–5042. doi: 10.1128/MCB.23.14.5031-5042.2003 PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu Y, Lee HC, Zhang L (2002) An examination of heme action in gene expression: heme and heme deficiency affect the expression of diverse genes in erythroid k562 and neuronal PC12 cells. DNA Cell Biol 21:333–346. doi: 10.1089/104454902753759744 PubMedCrossRefGoogle Scholar
  29. 29.
    Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493SPubMedGoogle Scholar
  30. 30.
    Yokota T, Matsuzaki Y, Miyazawa K et al (2004) Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Oncogene 23:5340–5349. doi: 10.1038/sj.onc.1207689 PubMedCrossRefGoogle Scholar
  31. 31.
    Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352. doi: 10.1038/38664 PubMedCrossRefGoogle Scholar
  32. 32.
    Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25:1608–1619. doi: 10.1128/MCB.25.5.1608-1619.2005 PubMedCrossRefGoogle Scholar
  33. 33.
    Gemma A, Takenoshita S, Hagiwara K et al (1996) Molecular analysis of the cyclin-dependent kinase inhibitor genes p15INK4b/MTS2, p16INK4/MTS1, p18 and p19 in human cancer cell lines. Int J Cancer 68:605–611. doi:10.1002/(SICI)1097-0215(19961127)68:5<605::AID-IJC9>3.0.CO;2-2PubMedCrossRefGoogle Scholar
  34. 34.
    Roussel MF (1999) The INK4 family of cell cycle inhibitors in cancer. Oncogene 18:5311–5317. doi: 10.1038/sj.onc.1202998 PubMedCrossRefGoogle Scholar
  35. 35.
    Drexler HG (1998) Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 12:845–859. doi: 10.1038/sj.leu.2401043 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Lin Li
    • 1
  • Guoping Zhang
    • 2
  • Ye Zhang
    • 1
  • Jiang Tan
    • 1
  • Hui Huang
    • 1
  • Baiqu Huang
    • 1
  • Jun Lu
    • 1
    Email author
  1. 1.Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina
  2. 2.Department of BiologyGuangdong Medical CollegeDongguanChina

Personalised recommendations