Molecular and Cellular Biochemistry

, Volume 318, Issue 1–2, pp 109–115

Endoplasmic reticulum stress contributes to the cell death induced by UCH-L1 inhibitor

  • Yu-Yan Tan
  • Hai-Yan Zhou
  • Zhi-Quan Wang
  • Sheng-Di Chen


At the neuropathological level, Parkinson’s disease (PD) is characterized by the accumulation of misfolded proteins, which can trigger the unfolded protein response (UPR). UCH-L1 is a component of ubiquitin proteasome system (UPS). It is reported that the loss of its function will impair ubiquitin proteasome system and cause toxicity to cells. But its mechanism has not been illustrated. In this study, we detected the protein expression of Bip/Grp78 and the spliced form of XBP-1 to examine the activation of unfolded protein response after SK-N-SH cells being treated with LDN-57444, a UCH-L1 inhibitor which could inhibit UCH-L1 hydrolase activity. Our data showed that UCH-L1 inhibitor was able to cause cell death through the apoptosis pathway by decreasing the activity of ubiquitin proteasome system and increasing the levels of highly ubiquitinated proteins, both of which can activate unfolded protein response. There is a lot of evidence that unfolded protein response is activated as a protective response at the early stage of the stress; this protective response can switch to a pro-apoptotic response when the stress persists. In this study, we demonstrated this switch by detecting the upregulation of CHOP/Gadd153. Taken together, our data indicated that the apoptosis induced by UCH-L1 inhibitor may be triggered by the activation of endoplasmic reticulum stress (ERS). Moreover, we provide a new cell model for studying the roles of UCH-L1 in Parkinson’s disease.


Parkinson’s disease Ubiquitin proteasome system Endoplasmic reticulum stress Unfolded protein response UCH-L1 inhibitor 


  1. 1.
    Wilkinson KD, Lee KM, Deshpande S et al (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673. doi:10.1126/science.2530630 PubMedCrossRefGoogle Scholar
  2. 2.
    Leroy E, Boyer R, Auburger G et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452. doi:10.1038/26652 PubMedCrossRefGoogle Scholar
  3. 3.
    Nishikawa K, Li H, Kawamura R et al (2003) Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun 304:176–183. doi:10.1016/S0006-291X(03)00555-2 PubMedCrossRefGoogle Scholar
  4. 4.
    Hoozemans JJ, van Haastert ES, Eikelenboom P et al (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711. doi:10.1016/j.bbrc.2007.01.043 PubMedCrossRefGoogle Scholar
  5. 5.
    Holtz WA, O’Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377. doi:10.1074/jbc.M211821200 PubMedCrossRefGoogle Scholar
  6. 6.
    Ryu EJ, Harding HP, Angelastro JM et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–10698PubMedGoogle Scholar
  7. 7.
    Imai Y, Soda M, Inoue H et al (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902. doi:10.1016/S0092-8674(01)00407-X PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462 PubMedCrossRefGoogle Scholar
  9. 9.
    McNaught KS, Mytilineou C, Jnobaptiste R et al (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81:301–306. doi:10.1046/j.1471-4159.2002.00821.x PubMedCrossRefGoogle Scholar
  10. 10.
    Liu Y, Lashuel HA, Choi S et al (2003) Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem Biol 10:837–846. doi:10.1016/j.chembiol.2003.08.010 PubMedCrossRefGoogle Scholar
  11. 11.
    Gong B, Cao ZX, Zheng P (2006) Ubiquitin hydrolase Uch-l1 rescues β-Amyloid-induced decreases in synaptic function and contextual memory. Cell 126:775–788. doi:10.1016/j.cell.2006.06.046 PubMedCrossRefGoogle Scholar
  12. 12.
    Fujimuro M, Sawada H, Yokosawa H (1994) Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett 349:173–180. doi:10.1016/0014-5793(94)00647-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshida H, Haze K, Yanagi H et al (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749. doi:10.1074/jbc.273.50.33741 PubMedCrossRefGoogle Scholar
  14. 14.
    Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 1010:186–194. doi:10.1196/annals.1299.032 PubMedCrossRefGoogle Scholar
  15. 15.
    McCullough KD, Martindale JL, Klotz LO et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259. doi:10.1128/MCB.21.4.1249-1259.2001 PubMedCrossRefGoogle Scholar
  16. 16.
    Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459. doi:10.1128/MCB.23.21.7448-7459.2003 PubMedCrossRefGoogle Scholar
  17. 17.
    Plongthongkum N, Kullawong N, Panyim S et al (2007) Ire1 regulated XBP1 mRNA splicing is essential for the unfolded protein response (unfolded protein response) in Drosophila melanogaster. Biochem Biophys Res Commun 354:789–794. doi:10.1016/j.bbrc.2007.01.056 PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891. doi:10.1016/S0092-8674(01)00611-0 PubMedCrossRefGoogle Scholar
  19. 19.
    Lee K, Tirasophon W, Shen X et al (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466. doi:10.1101/gad.964702 PubMedCrossRefGoogle Scholar
  20. 20.
    Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446. doi:10.1016/S0896-6273(03)00606-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Akiko Y, Yasuhiro Y, Kiyokazu O et al (2006) Involvement of endoplasmic reticulum stress on cell death induced by 6-OHDA. Neurochem Res 31:657–664. doi:10.1007/s11064-006-9062-6 CrossRefGoogle Scholar
  22. 22.
    Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28. doi:10.1016/j.tcb.2003.11.001 PubMedCrossRefGoogle Scholar
  23. 23.
    Pelham HR (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5:1–23. doi:10.1146/annurev.cb.05.110189.000245 PubMedCrossRefGoogle Scholar
  24. 24.
    Wang XZ, Kuroda M, Sok J et al (1998) Identification of novel stress-induced genes downstream of chop. EMBO J 17:3619–3630. doi:10.1093/emboj/17.13.3619 PubMedCrossRefGoogle Scholar
  25. 25.
    Bennett MC, Bishop JF, Leng Y et al (1999) Degradation of alpha-synuclein by proteasome. J Biol Chem 274:33855–33858. doi:10.1074/jbc.274.48.33855 PubMedCrossRefGoogle Scholar
  26. 26.
    Rideout HJ, Larsen KE, Sulzer D et al (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899–908. doi:10.1046/j.1471-4159.2001.00474.x PubMedCrossRefGoogle Scholar
  27. 27.
    Lee HJ, Suk JE, Bae EJ et al (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol; Epub ahead of printGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Yu-Yan Tan
    • 1
    • 2
  • Hai-Yan Zhou
    • 1
  • Zhi-Quan Wang
    • 2
  • Sheng-Di Chen
    • 1
    • 2
  1. 1.Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao-Tong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS)Chinese Academy of Sciences (CAS) & Shanghai Jiao-Tong University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations