Molecular and Cellular Biochemistry

, Volume 318, Issue 1–2, pp 33–42 | Cite as

Protective effect of butin against hydrogen peroxide-induced apoptosis by scavenging reactive oxygen species and activating antioxidant enzymes

  • Rui Zhang
  • Sungwook Chae
  • Kyoung Ah Kang
  • Mei Jing Piao
  • Dong Ok Ko
  • Zhi Hong Wang
  • Doek Bae Park
  • Jae Woo Park
  • Ho Jin You
  • Jin Won HyunEmail author


The antioxidant property of butin was investigated for cytoprotective effect against H2O2-induced cell damage. This compound showed intracellular reactive oxygen species (ROS) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, inhibition of lipid peroxidation, and DNA damage. This radical scavenging activity of butin protected cell damage exposed to H2O2. Also, butin reduced the apoptotic cells induced by H2O2, as demonstrated by the decreased DNA fragmentation, apoptotic body formation, and caspase 3 activity. In addition, butin restored the activity and protein expression of cellular antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) in H2O2-treated cells. Taken together, these findings suggest that butin protected cells against H2O2-induced cell damage via antioxidant property.


Antioxidant Butin Oxidative stress Antioxidant enzyme Apoptosis Cytoprotective activity 



This research was performed under the program of Basic Atomic Energy Research Institute (BAERI) which is part of the Nuclear R&D Programs and in part from the study of the DNA repair regulation with the disease program [M1063901] funded by the Ministry of Science & Technology of Korea (KOSEF).


  1. 1.
    Carlo GD, Mascolo N, Izzo AA et al (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353. doi: 10.1016/S0024-3205(99)00120-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Amic D, Davidovic-Amic D, Beslo D et al (2003) Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 76:55–61Google Scholar
  3. 3.
    Jovanovic SV, Steenken S, Tosic M et al (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851. doi: 10.1021/ja00090a032 CrossRefGoogle Scholar
  4. 4.
    van Acker FA, Schouten O, Haenen GR et al (2000) Flavonoids can replace alpha-tocopherol as an antioxidant. FEBS Lett 473:145–148. doi: 10.1016/S0014-5793(00)01517-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Gordon MH, Roedig-Penman A (1998) Antioxidant activity of quercetin and myricetin in liposomes. Chem Phys Lipids 97:79–85. doi: 10.1016/S0009-3084(98)00098-X PubMedCrossRefGoogle Scholar
  6. 6.
    Rice-Evans C, Miller NJ, Bolwell GP et al (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22:375–383. doi: 10.3109/10715769509145649 PubMedCrossRefGoogle Scholar
  7. 7.
    Marja PK, Anu IH, Heikki JV et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. doi: 10.1021/jf990146l CrossRefGoogle Scholar
  8. 8.
    Sugihara N, Arakawa T, Ohnishi M et al (1999) Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med 27:1313–1323. doi: 10.1016/S0891-5849(99)00167-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Jang DS, Park EJ, Hawthorne ME et al (2003) Potential cancer chemopreventive constituents of the seeds of Dipteryx odorata (tonka bean). J Nat Prod 66:583–587. doi: 10.1021/np020522n PubMedCrossRefGoogle Scholar
  10. 10.
    Liu RX, Wang Q, Guo HZ et al (2005) Simultaneous determination of 10 major flavonoids in Dalbergia odorifera by high performance liquid chromatography. J Pharm Biomed Anal 39:469–476. doi: 10.1016/j.jpba.2005.04.007 PubMedCrossRefGoogle Scholar
  11. 11.
    Su EN, Yu SS, Pei YH (2007) Studies on chemical constituents from stems and leaves of Adenanthera pavanina. Zhongguo Zhong Yao Za Zhi 32:2135–2138PubMedGoogle Scholar
  12. 12.
    Tian G, Zhang U, Zhang T et al (2004) Separation of flavonoids from the seeds of Vernonia anthelmintica Willd by high-speed counter-current chromatography. J Chromatogr A 1049:219–222PubMedGoogle Scholar
  13. 13.
    Bhargava SK (1986) Estrogenic and postcoital anticonceptive activity in rats of butin isolated from Butea monosperma seed. J Ethnopharmacol 18:95–101. doi: 10.1016/0378-8741(86)90046-2 PubMedCrossRefGoogle Scholar
  14. 14.
    Lee MH, Lin YP, Hsu FL et al (2006) Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. Phytochemistry 67:1262–1270. doi: 10.1016/j.phytochem.2006.05.008 PubMedCrossRefGoogle Scholar
  15. 15.
    Murray JI, Whitfield ML, Trinklein ND et al (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15:2361–2374. doi: 10.1091/mbc.E03-11-0799 PubMedCrossRefGoogle Scholar
  16. 16.
    Pryor WA, Stone K, Zang LY et al (1998) Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol 11:441–448. doi: 10.1021/tx970159y PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenkranz AR, Schmaldienst S, Stuhlmeier KM et al (1992) A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate. J Immunol Methods 156:39–45. doi: 10.1016/0022-1759(92)90008-H PubMedCrossRefGoogle Scholar
  18. 18.
    Lo SF, Nalawade SM, Mulabagal V et al (2004) In vitro propagation by asymbiotic seed germination and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity studies of tissue culture raised plants of three medicinally important species of Dendrobium. Biol Pharm Bull 27:731–735. doi: 10.1248/bpb.27.731 PubMedCrossRefGoogle Scholar
  19. 19.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi: 10.1016/0003-2697(79)90738-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Rajagopalan R, Ranjan S, Nair C (2003) Effect of vinblastine sulfate on gamma-radiation-induced DNA single-strand breaks in murine tissues. Mutat Res 536:15–25PubMedGoogle Scholar
  21. 21.
    Singh NP (2000) Microgels for estimation of DNA strand breaks, DNA protein cross links and apoptosis. Mutat Res 455:111–127. doi: 10.1016/S0027-5107(00)00075-0 PubMedGoogle Scholar
  22. 22.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  23. 23.
    Carrillo MC, Kanai S, Nokubo M et al (1991) (−) Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 48:517–521. doi: 10.1016/0024-3205(91)90466-O PubMedCrossRefGoogle Scholar
  24. 24.
    Carmichael J, DeGraff WG, Gazdar AF (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–941PubMedGoogle Scholar
  25. 25.
    Margoliash E, Novogrodsky A, Schejter A et al (1960) Irreversible reaction of 3-amino-1,2,4-triazole and related inhibitors with the protein of catalase. Biochem J 74:339–348PubMedGoogle Scholar
  26. 26.
    Guo S, Yan J, Yang T et al (2007) Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry 62:1353–1362. doi: 10.1016/j.biopsych.2007.04.020 PubMedCrossRefGoogle Scholar
  27. 27.
    Lee HJ, Noh YH, Lee DY et al (2005) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol 84:897–905. doi: 10.1016/j.ejcb.2005.07.003 PubMedCrossRefGoogle Scholar
  28. 28.
    Singh D, Chopra K (2004) The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats. Pharmacol Res 50:187–193. doi: 10.1016/j.phrs.2004.01.007 PubMedCrossRefGoogle Scholar
  29. 29.
    Zhan C, Yang J (2006) Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol Res 53:303–309. doi: 10.1016/j.phrs.2005.12.008 PubMedCrossRefGoogle Scholar
  30. 30.
    Brunelle JK, Chandel NS (2002) Oxygen deprivation induced cell death: an update. Apoptosis 7:475–482. doi: 10.1023/A:1020668923852 PubMedCrossRefGoogle Scholar
  31. 31.
    Rice-Evans CA, Miller NJ, George P (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. doi: 10.1016/0891-5849(95)02227-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Cai YZ, Mei S, Jie X et al (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78:2872–2888. doi: 10.1016/j.lfs.2005.11.004 PubMedCrossRefGoogle Scholar
  33. 33.
    Salter L, Clifford T, Morley N et al (2004) The use of comet assay data with a simple reaction mechanism to evaluate the relative effectiveness of free radical scavenging by quercetin, epigallocatechin gallate and N-acetylcysteine in UV-irradiated MRC5 lung fibroblasts. J Photochem Photobiol B 75:57–61. doi: 10.1016/j.jphotobiol.2004.05.007 PubMedCrossRefGoogle Scholar
  34. 34.
    Cos P, Calomme M, Sindambiwe JB et al (2001) Cytotoxicity and lipid peroxidation-inhibiting activity of flavonoids. Planta Med 67:515–519. doi: 10.1055/s-2001-16472 PubMedCrossRefGoogle Scholar
  35. 35.
    Lee JC, Lim KT, Jang YS (2002) Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim Biophys Acta-Gen Subjects 1570:181–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Rui Zhang
    • 1
  • Sungwook Chae
    • 2
  • Kyoung Ah Kang
    • 1
  • Mei Jing Piao
    • 1
  • Dong Ok Ko
    • 1
  • Zhi Hong Wang
    • 1
  • Doek Bae Park
    • 3
  • Jae Woo Park
    • 4
  • Ho Jin You
    • 5
  • Jin Won Hyun
    • 1
    Email author
  1. 1.Department of Biochemistry, College of Medicine and Applied Radiological Science Research InstituteCheju National UniversityJeju-siSouth Korea
  2. 2.Department of Herbal Resources ResearchKorea Institute of Oriental MedicineDaejeonSouth Korea
  3. 3.Department of Histology, College of MedicineCheju National UniversityJeju-siSouth Korea
  4. 4.Department of Nuclear and Energy EngineeringCheju National UniversityJeju-siSouth Korea
  5. 5.Department of Pharmacology, College of MedicineChosun UniversityGwangjuSouth Korea

Personalised recommendations