Molecular and Cellular Biochemistry

, Volume 317, Issue 1–2, pp 61–68

hBolA, novel non-classical secreted proteins, belonging to different BolA family with functional divergence

  • Yu-Bo Zhou
  • Jia-Bing Cao
  • Bing-Bing Wan
  • Xin-Rong Wang
  • Guo-Hui Ding
  • Hong Zhu
  • Hong-Meng Yang
  • Ke-Sheng Wang
  • Xin Zhang
  • Ze-Guang Han
Article

Abstract

This study reported that all three human BolA proteins (hBolA1, hBolA2, and hBolA3) are novel non-classical secreted proteins identified with bioinformatics and molecular biology experiments. The three BolA fusion proteins with c-Myc tag could be secreted into the culture medium of the transfected Cos-7 cells, although they could not be colocalized with Golgi apparatus. And the secretion of three BolA proteins could not be inhibited after BFA treatment. Furthermore, the secretion was not dependent on its predicted signal peptide. All the experiment results suggested that the secretion was a non-classical export. Phylogenetic analysis showed that the human BolAs belong to three different groups with functional divergence of BolA subfamily, where the different helix-turn-helix motif among hBolA1, hBolA2, and hBolA3 could be responsible for their functional divergence. Our data provided a basis for functional studies of BolA protein family.

Keywords

hBolA1 hBolA2 hBolA3 Non-classic secretion BolA protein family Functional divergence 

Abbreviations

HTH motif

Helix-turn-helix motif

ER

Endoplasmic reticulum

TGN

Trans-Golgi network

SP

Signal peptide

BFA

Brefeldin A

AMW

Apparent molecular weight

Supplementary material

11010_2008_9809_MOESM1_ESM.pdf (25 kb)
Supplement 1Primary structure of hBolA1, hBolA2 and hBolA3. (A) Schematic representation of protein structure of hBolA1, hBolA2 and hBolA3. “SP” means signal peptide and HTH motif means helix-turn-helix motif. (B) Schematic representation of genomic structure of hBolA1, hBolA2 and hBolA3. (PDF 25 kb)
11010_2008_9809_MOESM2_ESM.pdf (31 kb)
Supplement 2Tissue expression profiles of hBolA1, hBolA2 and hBolA3 genes detected with RT-PCR. (PDF 31 kb)
11010_2008_9809_MOESM3_ESM.pdf (17 kb)
Supplement 3The AMW change of hBolAs treated without(-) or with(+) tunicamycin treatment. (PDF 18 kb)

References

  1. 1.
    Kasai T, Inoue M, Koshiba S et al (2004) Solution structure of a BolA-like protein from Mus musculus. Protein Sci 13:545–548. doi:10.1110/ps.03401004 PubMedCrossRefGoogle Scholar
  2. 2.
    Aldea M, Hernandez-Chico C, de la Campa AG et al (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170:5169–5176PubMedGoogle Scholar
  3. 3.
    Aldea M, Garrido T, Hernandez-Chico C, Vicente M, Kushner SR (1989) Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J 8:3923–3931PubMedGoogle Scholar
  4. 4.
    Santos JM, Freire P, Vicente M, Arraiano CM (1999) The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32:789–798. doi:10.1046/j.1365-2958.1999.01397.x PubMedCrossRefGoogle Scholar
  5. 5.
    Santos JM, Lobo M, Matos AP, De Pedro MA, Arraiano CM (2002) The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45:1729–1740. doi:10.1046/j.1365-2958.2002.03131.x PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JK, Park EJ, Chung HK et al (1994) Isolation of UV-inducible transcripts from Schizosaccharomyces pombe. Biochem Biophys Res Commun 202:1113–1119. doi:10.1006/bbrc.1994.2043 PubMedCrossRefGoogle Scholar
  7. 7.
    Kim SH, Kim M, Lee JK et al (1997) Identification and expression of uvi31+, a UV-inducible gene from Schizosaccharomyces pombe. Environ Mol Mutagen 30:72–81. doi:10.1002/(SICI)1098-2280(1997)30:1<72::AID-EM10>3.0.CO;2-NGoogle Scholar
  8. 8.
    Kim MJ, Kim HS, Lee JK, Lee CB, Park SD (2002) Regulation of septation and cytokinesis during resumption of cell division requires uvi31+, a UV-inducible gene of fission yeast. Mol Cells 14:425–430PubMedGoogle Scholar
  9. 9.
    Kim JGAR, Berndt JA, Kim NW, Hudson LD (1998) A secreted DNA-binding protein that is translated through an internal ribosome entry site (IRES) and distributed in a discrete pattern in the central nervous system. Mol Cell Neurosci 12:119–140. doi:10.1006/mcne.1998.0701 PubMedCrossRefGoogle Scholar
  10. 10.
    Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356. doi:10.1093/protein/gzh037 PubMedCrossRefGoogle Scholar
  11. 11.
    Bendtsen JD, Kiemer L, Fausboll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58–70. doi:10.1186/1471-2180-5-58 PubMedCrossRefGoogle Scholar
  12. 12.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi:10.1093/bioinformatics/17.12.1244 PubMedCrossRefGoogle Scholar
  14. 14.
    Creevey CJ, McInerney JO (2003) CRANN: detecting adaptive evolution in protein-coding DNA sequences. Bioinformatics 19:1726. doi:10.1093/bioinformatics/btg225 PubMedCrossRefGoogle Scholar
  15. 15.
    Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  16. 16.
    Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664–1674PubMedGoogle Scholar
  17. 17.
    Gu X (2001) A site-specific measure for rate difference after gene duplication or speciation. Mol Biol Evol 18:2327–2330PubMedGoogle Scholar
  18. 18.
    Zhou YB, Liu F, Zhu ZD et al (2004) N-glycosylation is required for efficient secretion of a novel human secreted glycoprotein, hPAP21. FEBS Lett 576:401–407. doi:10.1016/j.febslet.2004.09.039 PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou YB, Cao JB, Yang HM et al (2007) hZG16, a novel human secreted protein expressed in liver, was down-regulated in hepatocellular carcinoma. Biochem Biophys Res Commun 355:679–686. doi:10.1016/j.bbrc.2007.02.020 PubMedCrossRefGoogle Scholar
  20. 20.
    Cleves AE (1997) Protein transports: the nonclassical ins and outs. Curr Biol 7:R318–R320. doi:10.1016/S0960-9822(06)00148-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Tanudji M, Hevi S, Chuck SL (2003) The nonclassic secretion of thioredoxin is not sensitive to redox state. Am J Physiol Cell Physiol 284:C1272–C1279PubMedGoogle Scholar
  22. 22.
    Cao JB, Zhou YB, Qi J et al (2006) Molecular cloning and characterization of mBolA1, a novel mouse secreted protein. China Biotechnol 26:1–7Google Scholar
  23. 23.
    Cuff JA, Barton GJ (2000) Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511. doi:10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-QGoogle Scholar
  24. 24.
    Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427. doi:10.1093/bioinformatics/btg430 PubMedCrossRefGoogle Scholar
  25. 25.
    Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119. doi:10.1046/j.1432-1033.2003.03577.x PubMedCrossRefGoogle Scholar
  26. 26.
    Koch B, Nybroe O (2006) Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli. FEMS Microbiol Lett 262:48–56. doi:10.1111/j.1574-6968.2006.00359.x PubMedCrossRefGoogle Scholar
  27. 27.
    Carginale V, Trinchella F, Capasso C et al (2004) Adaptive evolution and functional divergence of pepsin gene family. Gene 333:81–90. doi:10.1016/j.gene.2004.02.011 PubMedCrossRefGoogle Scholar
  28. 28.
    Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155. doi:10.1126/science.290.5494.1151 PubMedCrossRefGoogle Scholar
  29. 29.
    Huynen MA, Spronk CA, Gabaldon T, Snel B (2005) Combining data from genomes, Y2H and 3D structure indicates that BolA is a reductase interacting with a glutaredoxin. FEBS Lett 579:591–596. doi:10.1016/j.febslet.2004.11.111 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Yu-Bo Zhou
    • 1
  • Jia-Bing Cao
    • 1
  • Bing-Bing Wan
    • 1
  • Xin-Rong Wang
    • 1
  • Guo-Hui Ding
    • 2
  • Hong Zhu
    • 1
  • Hong-Meng Yang
    • 1
  • Ke-Sheng Wang
    • 1
  • Xin Zhang
    • 1
  • Ze-Guang Han
    • 1
  1. 1.Chinese National Human Genome Center at ShanghaiShanghaiChina
  2. 2.Bioinformatics Center, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations