Molecular and Cellular Biochemistry

, Volume 314, Issue 1–2, pp 179–191 | Cite as

B-type natriuretic peptide and wall stress in dilated human heart

  • P. Alter
  • H. Rupp
  • M. B. Rominger
  • A. Vollrath
  • F. Czerny
  • J. H. Figiel
  • P. Adams
  • F. Stoll
  • K. J. Klose
  • B. Maisch


Background Although B-type natriuretic peptide (BNP) is used as complimentary diagnostic tool in patients with unknown thoracic disorders, many other factors appear to trigger its release. In particular, it remains unresolved to what extent cellular stretch or wall stress of the whole heart contributes to enhanced serum BNP concentration. Wall stress cannot be determined directly, but has to be calculated from wall volume, cavity volume and intraventricular pressure of the heart. The hypothesis was, therefore, addressed that wall stress as determined by cardiac magnetic resonance imaging (CMR) is the major determinant of serum BNP in patients with a varying degree of left ventricular dilatation or dysfunction (LVD). Methods A thick-walled sphere model based on volumetric analysis of the LV using CMR was compared with an echocardiography-based approach to calculate LV wall stress in 39 patients with LVD and 21 controls. Serum BNP was used as in vivo marker of a putatively raised wall stress. Nomograms of isostress lines were established to assess the extent of load reduction that is necessary to restore normal wall stress and related biochemical events. Results Both enddiastolic and endsystolic LV wall stress were correlated with the enddiastolic LV volume (r = 0.54, P < 0.001; r = 0.81, P < 0.001). LV enddiastolic wall stress was related to pulmonary pressure (capillary: r = 0.69, P < 0.001; artery: r = 0.67, P < 0.001). Although LV growth was correlated with the enddiastolic and endsystolic volume (r = 0.73, P < 0.001; r = 0.70, P < 0.001), patients with LVD exhibited increased LV wall stress indicating an inadequately enhanced LV growth. Both enddiastolic (P < 0.05) and endsystolic (P < 0.01) wall stress were increased in patients with increased BNP. In turn, BNP concentration was elevated in individuals with increased enddiastolic wall stress (>8 kPa: 587 ± 648 pg/ml, P < 0.05; >12 kPa: 715 ± 661 pg/ml, P < 0.001; normal ≤4 kPa: 124 ± 203 pg/ml). Analysis of variance revealed LV enddiastolic wall stress as the only independent hemodynamic parameter influencing BNP (P < 0.01). Using nomograms with “isostress” curves, the extent of load reduction required for restoring normal LV wall stress was assessed. Compared with the CMR-based volumetric analysis for wall stress calculation, the echocardiography based approach underestimated LV wall stress particularly of dilated hearts. Conclusions In patients with LVD, serum BNP was increased over the whole range of stress values which were the only hemodynamic predictors. Cellular stretch appears to be a major trigger for BNP release. Biochemical mechanisms need to be explored which appear to operate over this wide range of wall stress values. It is concluded that the diagnostic use of BNP should primarily be directed to assess ventricular wall stress rather than the extent of functional ventricular impairment in LVD.


Mechanical wall stress Heart failure Ventricular dilatation Brain natriuretic peptide BNP Stretch 



The study was supported by a Research Grant of the University Medical Center Giessen and Marburg.


  1. 1.
    Balion CM, Santaguida P, McKelvie R, Hill SA, McQueen MJ, Worster A, Raina PS (2008) Physiological, pathological, pharmacological, biochemical and hematological factors affecting BNP and NT-proBNP. Clin Biochem 41(4–5):231–239PubMedCrossRefGoogle Scholar
  2. 2.
    Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90(1):195–203PubMedGoogle Scholar
  3. 3.
    Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J Clin Invest 104(11):1603–1612PubMedCrossRefGoogle Scholar
  4. 4.
    Wiese S, Breyer T, Dragu A, Wakili R, Burkard T, Schmidt-Schweda S, Fuchtbauer EM, Dohrmann U, Beyersdorf F, Radicke D, Holubarsch CJ (2000) Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102(25):3074–3079PubMedGoogle Scholar
  5. 5.
    Alter P, Rupp H, Rominger MB, Vollrath A, Czerny F, Klose KJ, Maisch B (2007) Relation of B-type natriuretic peptide to left ventricular wall stress as assessed by cardiac magnetic resonance imaging in patients with dilated cardiomyopathy. Can J Physiol Pharmacol 85(8):790–799PubMedCrossRefGoogle Scholar
  6. 6.
    Rupp H (1989) Differential effect of physical exercise routines on ventricular myosin and peripheral catecholamine stores in normotensive and spontaneously hypertensive rats. Circ Res 65(2):370–377PubMedGoogle Scholar
  7. 7.
    Rupp H, Berger HJ, Pfeifer A, Werdan K (1991) Effect of positive inotropic agents on myosin isozyme population and mechanical activity of cultured rat heart myocytes. Circ Res 68(4):1164–1173PubMedGoogle Scholar
  8. 8.
    Dell’Italia LJ, Evanochko WT, Blackwell GG, Pearce DJ, Pohost GM (1993) Relationship between shortening load, contractility, and myocardial energetics in intact dog. Am J Physiol 264(6 Pt 2):H2180–H2187PubMedGoogle Scholar
  9. 9.
    Hikoso S, Yamaguchi O, Higuchi Y, Hirotani S, Takeda T, Kashiwase K, Watanabe T, Taniike M, Tsujimoto I, Asahi M, Matsumura Y, Nishida K, Nakajima H, Akira S, Hori M, Otsu K (2004) Pressure overload induces cardiac dysfunction and dilation in signal transducer and activator of transcription 6-deficient mice. Circulation 110(17):2631–2637PubMedCrossRefGoogle Scholar
  10. 10.
    Rupp H, Maisch B (2007) Separation of large mammalian ventricular myosin differing in ATPase activity. Can J Physiol Pharmacol 85(3–4):326–331PubMedCrossRefGoogle Scholar
  11. 11.
    Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96(10):3681–3686PubMedGoogle Scholar
  12. 12.
    Alter P, Rupp H, Rominger MB, Klose KJ, Maisch B (2008) A new methodological approach to assess cardiac work by pressure–volume and stress-length relations in patients with aortic valve stenosis and dilated cardiomyopathy. Pflugers Arch 455(4):627–636PubMedCrossRefGoogle Scholar
  13. 13.
    Vanderheyden M, Goethals M, Verstreken S, De Bruyne B, Muller K, Van Schuerbeeck E, Bartunek J (2004) Wall stress modulates brain natriuretic peptide production in pressure overload cardiomyopathy. J Am Coll Cardiol 44(12):2349–2354PubMedCrossRefGoogle Scholar
  14. 14.
    Vickery S, Price CP, John RI, Abbas NA, Webb MC, Kempson ME, Lamb EJ (2005) B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis 46(4):610–620PubMedCrossRefGoogle Scholar
  15. 15.
    McLean AS, Huang SJ, Nalos M, Tang B, Stewart DE (2003) The confounding effects of age, gender, serum creatinine, and electrolyte concentrations on plasma B-type natriuretic peptide concentrations in critically ill patients. Crit Care Med 31(11):2611–2618PubMedCrossRefGoogle Scholar
  16. 16.
    Mussalo H, Vanninen E, Ikaheimo R, Hartikainen J (2003) NT-proANP and BNP in renovascular and in severe and mild essential hypertension. Kidney Blood Press Res 26(1):34–41PubMedCrossRefGoogle Scholar
  17. 17.
    Alter P, Rupp H, Czerny F, Vollrath A, Rominger MB, Maisch B (2006) Relation of ventricular wall stress and autonomic tone in patients with dilated cardiomyopathy assessed by cardiac magnetic resonance imaging. Eur Heart J 27(Supp):P4039Google Scholar
  18. 18.
    Alter P, Rupp H, Maisch B (2006) Activated nuclear transcription factor kappaB in patients with myocarditis and dilated cardiomyopathy-relation to inflammation and cardiac function. Biochem Biophys Res Commun 339(1):180–187PubMedCrossRefGoogle Scholar
  19. 19.
    Sandler H, Dodge HT (1963) Left ventricular tension and stress in man. Circ Res 13:91–104PubMedGoogle Scholar
  20. 20.
    Mirsky I (1969) Left ventricular stresses in the intact human heart. Biophys J 9(2):189–208PubMedCrossRefGoogle Scholar
  21. 21.
    Alter P, Rupp H, Rominger MB, Klose KJ, Maisch B (2006) Relation of B-type natriuretic peptide to left ventricular wall stress in patients with dilated cardiomyopathy assessed by cardiac magnetic resonance imaging. Eur J Heart Fail 5(Supp 1):106Google Scholar
  22. 22.
    Grebe O, Kestler HA, Merkle N, Wohrle J, Kochs M, Hoher M, Hombach V (2004) Assessment of left ventricular function with steady-state-free-precession magnetic resonance imaging. Reference values and a comparison to left ventriculography. Z Kardiol 93(9):686–695PubMedCrossRefGoogle Scholar
  23. 23.
    Grossman W, Braunwald E, Mann T, McLaurin LP, Green LH (1977) Contractile state of the left ventricle in man as evaluated from end-systolic pressure–volume relations. Circulation 56(5):845–852PubMedGoogle Scholar
  24. 24.
    Douglas PS, Reichek N, Plappert T, Muhammad A, John Sutton MG (1987) Comparison of echocardiographic methods for assessment of left ventricular shortening and wall stress. J Am Coll Cardiol 9(4):945–951PubMedGoogle Scholar
  25. 25.
    Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, Goto Y, Nonogi H (2006) B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol 47(4):742–748PubMedCrossRefGoogle Scholar
  26. 26.
    Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, Omland T, Storrow AB, Abraham WT, Wu AH, Clopton P, Steg PG, Westheim A, Knudsen CW, Perez A, Kazanegra R, Herrmann HC, McCullough PA (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347(3):161–167PubMedCrossRefGoogle Scholar
  27. 27.
    Maisel AS, McCord J, Nowak RM, Hollander JE, Wu AH, Duc P, Omland T, Storrow AB, Krishnaswamy P, Abraham WT, Clopton P, Steg G, Aumont MC, Westheim A, Knudsen CW, Perez A, Kamin R, Kazanegra R, Herrmann HC, McCullough PA (2003) Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol 41(11):2010–2017PubMedCrossRefGoogle Scholar
  28. 28.
    Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17(3):323–329PubMedCrossRefGoogle Scholar
  29. 29.
    Pattynama PM, de Roos A, van der Wall EE, van Voorthuisen AE (1994) Evaluation of cardiac function with magnetic resonance imaging. Am Heart J 128(3):595–607PubMedCrossRefGoogle Scholar
  30. 30.
    Semelka RC, Tomei E, Wagner S, Mayo J, Kondo C, Suzuki J, Caputo GR, Higgins CB (1990) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174(3 Pt 1):763–768PubMedGoogle Scholar
  31. 31.
    Nohria A, Givertz MM (2006) B-type natriuretic peptide and the stressed heart. J Am Coll Cardiol 47(4):749–751PubMedCrossRefGoogle Scholar
  32. 32.
    de Simone G, Devereux RB, Ganau A, Hahn RT, Saba PS, Mureddu GF, Roman MJ, Howard BV (1996) Estimation of left ventricular chamber and stroke volume by limited M-mode echocardiography and validation by two-dimensional and Doppler echocardiography. Am J Cardiol 78(7):801–807PubMedCrossRefGoogle Scholar
  33. 33.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458PubMedCrossRefGoogle Scholar
  34. 34.
    Fischer SE, McKinnon GC, Maier SE, Boesiger P (1993) Improved myocardial agging contrast. Magn Reson Med 30(2):191–200PubMedCrossRefGoogle Scholar
  35. 35.
    Huisman RM, Sipkema P, Westerhof N, Elzinga G (1980) Comparison of models used to calculate left ventricular wall force. Med Biol Eng Comput 18(2):133–144PubMedCrossRefGoogle Scholar
  36. 36.
    Yin FC (1981) Ventricular wall stress. Circ Res 49(4):829–842PubMedGoogle Scholar
  37. 37.
    Janz RF, Kubert BR, Pate EF, Moriarty TF (1980) Effect of shape on pressure-volume relationships of ellipsoidal shells. Am J Physiol 238(6):H917–H926PubMedGoogle Scholar
  38. 38.
    Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure–volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289(2):H501–H512PubMedCrossRefGoogle Scholar
  39. 39.
    Mirsky I (1984) Assessment of diastolic function: suggested methods and future considerations. Circulation 69(4):836–841PubMedGoogle Scholar
  40. 40.
    Tokola H, Hautala N, Marttila M, Magga J, Pikkarainen S, Kerkela R, Vuolteenaho O, Ruskoaho H (2001) Mechanical load-induced alterations in B-type natriuretic peptide gene expression. Can J Physiol Pharmacol 79(8):646–653PubMedCrossRefGoogle Scholar
  41. 41.
    Liang YJ, Lai LP, Wang BW, Juang SJ, Chang CM, Leu JG, Shyu KG (2006) Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-kappaB in cardiomyocytes. Cardiovasc Res 72(2):303–312PubMedCrossRefGoogle Scholar
  42. 42.
    Silver MA, Maisel A, Yancy CW, McCullough PA, Burnett JC Jr., Francis GS, Mehra MR, Peacock WF, Fonarow G, Gibler WB, Morrow DA, Hollander J (2004) BNP Consensus Panel 2004: A clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail 10(5 Suppl 3):1–30CrossRefGoogle Scholar
  43. 43.
    Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353(26):2788–2796PubMedCrossRefGoogle Scholar
  44. 44.
    Saavedra WF, Tunin RS, Paolocci N, Mishima T, Suzuki G, Emala CW, Chaudhry PA, Anagnostopoulos P, Gupta RC, Sabbah HN, Kass DA (2002) Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 39(12):2069–2076PubMedCrossRefGoogle Scholar
  45. 45.
    Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D (1995) Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91(11):2717–2720PubMedGoogle Scholar
  46. 46.
    Randhawa AK, Singal PK (1992) Pressure overload-induced cardiac hypertrophy with and without dilation. J Am Coll Cardiol 20(7):1569–1575PubMedCrossRefGoogle Scholar
  47. 47.
    Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57(1):84–95PubMedGoogle Scholar
  48. 48.
    Blaufarb IS, Sonnenblick EH (1996) The renin-angiotensin system in left ventricular remodeling. Am J Cardiol 77(13):8C–16CPubMedCrossRefGoogle Scholar
  49. 49.
    Strauer BE, Beer K, Heitlinger K, Hofling B (1977) Left ventricular systolic wall stress as a primary determinant of myocardial oxygen consumption: comparative studies in patients with normal left ventricular function, with pressure and volume overload and with coronary heart disease. Basic Res Cardiol 72(2–3):306–313PubMedCrossRefGoogle Scholar
  50. 50.
    Schipke JD, Burkhoff D, Kass DA, Alexander J Jr., Schaefer J, Sagawa K (1990) Hemodynamic dependence of myocardial oxygen consumption indexes. Am J Physiol 258(5 Pt 2):H1281–H1291PubMedGoogle Scholar
  51. 51.
    Clement DL, De Buyzere M, Duprez D (1993) Left ventricular function and regression of left ventricular hypertrophy in essential hypertension. Am J Hypertens 6(3 Pt 2):14S–19SPubMedGoogle Scholar
  52. 52.
    Rupp H, Benkel M, Maisch B (2000) Control of cardiomyocyte gene expression as drug target. Mol Cell Biochem 212(1–2):135–142PubMedCrossRefGoogle Scholar
  53. 53.
    Ruskoaho H, Leskinen H, Magga J, Taskinen P, Mantymaa P, Vuolteenaho O, Leppaluoto J (1997) Mechanisms of mechanical load-induced atrial natriuretic peptide secretion: role of endothelin, nitric oxide, and angiotensin II. J Mol Med 75(11–12):876–885PubMedCrossRefGoogle Scholar
  54. 54.
    Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431PubMedCrossRefGoogle Scholar
  55. 55.
    von Offenberg SN, Cummins PM, Birney YA, Cullen JP, Redmond EM, Cahill PA (2004) Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovasc Res 63(4):625–634CrossRefGoogle Scholar
  56. 56.
    Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91(10):877–887PubMedCrossRefGoogle Scholar
  57. 57.
    Ladilov Y, Schafer C, Held A, Schafer M, Noll T, Piper HM (2000) Mechanism of Ca(2+) overload in endothelial cells exposed to simulated ischemia. Cardiovasc Res 47(2):394–403PubMedCrossRefGoogle Scholar
  58. 58.
    Peters SC, Piper HM (2007) Reoxygenation-induced Ca2+ rise is mediated via Ca2+ influx and Ca2+ release from the endoplasmic reticulum in cardiac endothelial cells. Cardiovasc Res 73(1):164–171PubMedCrossRefGoogle Scholar
  59. 59.
    Alter P, Grimm W, Vollrath A, Czerny F, Maisch B (2006) Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J 151(4):829–836PubMedCrossRefGoogle Scholar
  60. 60.
    Garan AR, Maron BJ, Wang PJ, Estes NA III, Link MS (2005) Role of streptomycin-sensitive stretch-activated channel in chest wall impact induced sudden death (commotio cordis). J Cardiovasc Electrophysiol 16(4):433–438PubMedGoogle Scholar
  61. 61.
    Kelly D, Mackenzie L, Hunter P, Smaill B, Saint DA (2006) Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. Clin Exp Pharmacol Physiol 33(7):642–648PubMedCrossRefGoogle Scholar
  62. 62.
    Itabashi Y, Miyoshi S, Yuasa S, Fujita J, Shimizu T, Okano T, Fukuda K, Ogawa S (2005) Analysis of the electrophysiological properties and arrhythmias in directly contacted skeletal and cardiac muscle cell sheets. Cardiovasc Res 67(3):561–570PubMedCrossRefGoogle Scholar
  63. 63.
    Garny A, Kohl P (2004) Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Ann N Y Acad Sci 1015:133–143PubMedCrossRefGoogle Scholar
  64. 64.
    Kamkin A, Kiseleva I, Isenberg G (2003) Activation and inactivation of a non-selective cation conductance by local mechanical deformation of acutely isolated cardiac fibroblasts. Cardiovasc Res 57(3):793–803PubMedCrossRefGoogle Scholar
  65. 65.
    de la Sierra A, Munoz A, Arcos E, Lopez JS, Relats J (2004) The effect of treatment with eprosartan on pulse pressure: factors predicting response. Can J Cardiol 20(Suppl C):17C–22CGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • P. Alter
    • 1
  • H. Rupp
    • 1
  • M. B. Rominger
    • 2
  • A. Vollrath
    • 1
  • F. Czerny
    • 1
  • J. H. Figiel
    • 2
  • P. Adams
    • 1
  • F. Stoll
    • 1
  • K. J. Klose
    • 2
  • B. Maisch
    • 1
  1. 1.Internal Medicine – CardiologyPhilipps UniversityMarburgGermany
  2. 2.RadiologyPhilipps UniversityMarburgGermany

Personalised recommendations