Advertisement

Molecular and Cellular Biochemistry

, Volume 314, Issue 1–2, pp 73–83 | Cite as

Proteome analysis of the transformation potential of the Epstein–Barr virus-encoded latent membrane protein 1 in nasopharyngeal epithelial cells NP69

  • Qiong Zhang
  • Zhiwei Zhang
  • Chengkun Wang
  • Zhiqiang Xiao
  • Yanhui Yu
  • Fang Yang
  • Zhuchu Chen
  • Zhimin He
Article

Abstract

Latent membrane protein 1 (LMP1) of Epstein–Barr virus has been identified to be crucial in inducing cell transformation. However, the mechanism of LMP1-mediated epithelial cell transformation remains unclear. In this study, nasopharyngeal epithelial cells NP69 were infected with retrovirus with gene encoding wild type LMP1 or mutational LMP1 defective in binding to tumor necrosis factor receptor-associated death domain (TRADD). The NP69-LMP1TRADD lost some malignant phenotypes compared with the NP69-LMP1WT. We performed proteomic approach to gain the differential protein expression profile associated with LMP1-mediated epithelial cell transformation. Furthermore, the differential expressional levels of partial identified proteins were confirmed by Western blot and real-time RT-PCR. Some were known to be related to the development of LMP1-induced transformation, and some were new LMP1-associated proteins. These data are valuable for further study of the mechanism of LMP1 in human nasopharyngeal carcinoma and provide some new clues for investigating other LMP1-associated tumors.

Keywords

EBV/LMP1 Proteome analysis Nasopharyngeal epithelial Transformation 

Abbreviations

2-DE

Two-dimensional gel electrophoresis

EBV

Epstein–Barr virus

LMP1

Latent membrane protein 1

NPC

Nasopharyngeal carcinoma

TRADD

Tumor necrosis factor receptor-associated death domain

WT

Wild type

Notes

Acknowledgments

We thank Dr. Sai Wah Tsao (Hong Kong University) for kindly providing NP69 cells and Dr. Liang Cao for S12 antibody. Grant sponsor: the National Science Foundation of China; grant number: 30470668.

References

  1. 1.
    Bonnet M, Guinebretiere JM, Kremmer E et al (1999) Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 91:1376–1381PubMedCrossRefGoogle Scholar
  2. 2.
    Pagano JS (1999) Epstein-Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians 111:573–580PubMedCrossRefGoogle Scholar
  3. 3.
    Mosialos G (2001) Cytokine signaling and Epstein-Barr virus-mediated cell transformation. Cytokine Growth Factor Rev 12:259–270PubMedCrossRefGoogle Scholar
  4. 4.
    Uchida J, Yasui T, Takaoka-Shichijo Y et al (1999) Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286:300–303PubMedCrossRefGoogle Scholar
  5. 5.
    Larcher C, Bernhard D, Schaadt E et al (2003) Functional analysis of the mutated Epstein-Barr virus oncoprotein LMP1(69del): implications for a new role of naturally occurring LMP1 variants. Haematologica 88:1324–1335PubMedGoogle Scholar
  6. 6.
    Mainou BA, Everly DN Jr, Raab-Traub N (2005) Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene 24:6917–6924PubMedCrossRefGoogle Scholar
  7. 7.
    Xin B, He Z, Yang X (2001) TRADD domain of Epstein-Barr virus transforming protein LMP1 is essential for inducing immortalization and suppressing senescence of primary rodent fibroblasts. J Virol 75:3010–3015PubMedCrossRefGoogle Scholar
  8. 8.
    Kim KR, Yoshizaki T, Miyamori H et al (2000) Transformation of Madin-Darby canine kidney (MDCK) epithelial cells by Epstein-Barr virus latent membrane protein 1 (LMP1) induces expression of Ets1 and invasive growth. Oncogene 19:1764–1771PubMedCrossRefGoogle Scholar
  9. 9.
    Dawson CW, Tramountanis G, Eliopoulos AG et al (2003) Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278:3694–3704PubMedCrossRefGoogle Scholar
  10. 10.
    Hatzivassiliou E, Mosialos G (2002) Cellular signaling pathways engaged by the Epstein-Barr virus transforming protein LMP1. Front Biosci 7:d319–d329PubMedCrossRefGoogle Scholar
  11. 11.
    He Z, Xin B, Yang X et al (2000) Nuclear factor-kappaB activation is involved in LMP1-mediated transformation and tumorigenesis of rat-1 fibroblasts. Cancer Res 60:1845–1848PubMedGoogle Scholar
  12. 12.
    Izumi KM, Kaye KM, Kieff ED (1997) The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci USA 94:1447–1452PubMedCrossRefGoogle Scholar
  13. 13.
    Kilger E, Kieser A, Baumann M et al (1998) Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. Embo J 17:1700–1709PubMedCrossRefGoogle Scholar
  14. 14.
    Yang X, Sham JS, Ng MH et al (2000) LMP1 of Epstein-Barr virus induces proliferation of primary mouse embryonic fibroblasts and cooperatively transforms the cells with a p16-insensitive CDK4 oncogene. J Virol 74:883–891PubMedCrossRefGoogle Scholar
  15. 15.
    Tsao SW, Wang X, Liu Y et al (2002) Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochim Biophys Acta 1590:150–158PubMedCrossRefGoogle Scholar
  16. 16.
    Gorg A, Obermaier C, Boguth G et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053PubMedCrossRefGoogle Scholar
  17. 17.
    Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333PubMedCrossRefGoogle Scholar
  18. 18.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen-Kerem R, Lahat N, Elmalah I et al (2002) Detection of cytokeratins in normal and malignant laryngeal epithelia by means of reverse transcriptase-polymerase chain reaction. Ann Otol Rhinol Laryngol 111:149–154PubMedGoogle Scholar
  20. 20.
    Pollack V, Scheiber K, Pfaller W et al (1997) Loss of cytokeratin expression and formation of actin stress fibers in dedifferentiated MDCK-C7 cell lines. Biochem Biophys Res Commun 241:541–547PubMedCrossRefGoogle Scholar
  21. 21.
    Stammberger P, Baczako K (1999) Cytokeratin 19 expression in human gastrointestinal mucosa during human prenatal development and in gastrointestinal tumors: relation to cell proliferation. Cell Tissue Res 298:377–381PubMedCrossRefGoogle Scholar
  22. 22.
    Lo AK, Liu Y, Wang XH et al (2003) Alterations of biologic properties and gene expression in nasopharyngeal epithelial cells by the Epstein-Barr virus-encoded latent membrane protein 1. Lab Invest 83:697–709PubMedGoogle Scholar
  23. 23.
    Lo AK, Huang DP, Lo KW et al (2004) Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells. Int J Cancer 109:919–925PubMedCrossRefGoogle Scholar
  24. 24.
    Hsu WM, Hsieh FJ, Jeng YM et al (2005) Calreticulin expression in neuroblastoma—a novel independent prognostic factor. Ann Oncol 16:314–321PubMedCrossRefGoogle Scholar
  25. 25.
    Yoon GS, Lee H, Jung Y et al (2000) Nuclear matrix of calreticulin in hepatocellular carcinoma. Cancer Res 60:1117–1120PubMedGoogle Scholar
  26. 26.
    Le Naour F, Brichory F, Misek DE et al (2002) A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis. Mol Cell Proteomics 1:197–203PubMedCrossRefGoogle Scholar
  27. 27.
    Hong SH, Misek DE, Wang H et al (2004) An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res 64:5504–5510PubMedCrossRefGoogle Scholar
  28. 28.
    Kageyama S, Isono T, Iwaki H et al (2004) Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem 50:857–866PubMedCrossRefGoogle Scholar
  29. 29.
    Mai J, Waisman DM, Sloane BF (2000) Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta 1477:215–230PubMedGoogle Scholar
  30. 30.
    Chiang Y, Rizzino A, Sibenaller ZA et al (1999) Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem 199:139–147PubMedCrossRefGoogle Scholar
  31. 31.
    Hajjar KA, Acharya SS (2000) Annexin II and regulation of cell surface fibrinolysis. Ann NY Acad Sci 902:265–271PubMedCrossRefGoogle Scholar
  32. 32.
    Chetcuti A, Margan SH, Russell P et al (2001) Loss of annexin II heavy and light chains in prostate cancer and its precursors. Cancer Res 61:6331–6334PubMedGoogle Scholar
  33. 33.
    Liu JW, Shen JJ, Tanzillo-Swarts A et al (2003) Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration. Oncogene 22:1475–1485PubMedCrossRefGoogle Scholar
  34. 34.
    Liu SH, Lin CY, Peng SY et al (2002) Down-regulation of annexin A10 in hepatocellular carcinoma is associated with vascular invasion, early recurrence, and poor prognosis in synergy with p53 mutation. Am J Pathol 160:1831–1837PubMedGoogle Scholar
  35. 35.
    Schwartz-Albiez R, Koretz K, Moller P et al (1993) Differential expression of annexins I and II in normal and malignant human mammary epithelial cells. Differentiation 52:229–237PubMedCrossRefGoogle Scholar
  36. 36.
    Smith PD, Moss SE (1994) Structural evolution of the annexin supergene family. Trends Genet 10:241–246PubMedCrossRefGoogle Scholar
  37. 37.
    Balch C, Dedman JR (1997) Annexins II and V inhibit cell migration. Exp Cell Res 237:259–263PubMedCrossRefGoogle Scholar
  38. 38.
    Xin W, Rhodes DR, Ingold C et al (2003) Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol 162:255–261PubMedGoogle Scholar
  39. 39.
    Smitherman AB, Mohler JL, Maygarden SJ et al (2004) Expression of annexin I, II and VII proteins in androgen stimulated and recurrent prostate cancer. J Urol 171:916–920PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Qiong Zhang
    • 1
  • Zhiwei Zhang
    • 1
  • Chengkun Wang
    • 1
  • Zhiqiang Xiao
    • 2
  • Yanhui Yu
    • 1
  • Fang Yang
    • 1
  • Zhuchu Chen
    • 1
    • 2
  • Zhimin He
    • 1
  1. 1.Cancer Research Institute, Xiangya School of MedicineCentral South UniversityChangshaP.R. China
  2. 2.Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya HospitalCentral South UniversityChangshaP.R. China

Personalised recommendations