Molecular and Cellular Biochemistry

, Volume 314, Issue 1–2, pp 51–58 | Cite as

Involvement of Ad4BP/SF-1, DAX-1, and COUP-TFII transcription factor on steroid production and luteinization in ovarian theca cells

  • Chiaki Murayama
  • Hitoshi Miyazaki
  • Akio Miyamoto
  • Takashi Shimizu


To examine the essential mechanisms of steroid production in ovarian theca cells, we analyzed the expression of genes associated with steroid production using simple culture system with serum medium. In addition, we examined the involvement of DAX-1, COUP-TFII, and Ad4BP/SF-1 transcription factors on the steroid production in theca cells. Theca cells begin to display an elongated or fibroblastic aspect within 24 h of culture. Over the next 48 h, they metamorphosed from the fibroblastic to the epitheloid phenotype. The number of theca cells increased during culture period. Androstenedione and progesterone production per cell decreased at 48–96 h compared with 0–48 h of culture. Steroidogenic acute regulatory protein (StAR) and CYP 17 genes expression decreased at 48 h compared with 0 h of culture, and afterward maintained a low level. In contrast, expression of 3β-HSD and P450scc mRNAs increased at 48 h compared with 0 h of culture. Protein expression of Ab4BP/SF-1 maintained a constant level during culture. COUP-TFII protein expression showed a peak level at 24 h of culture period. DAX-1 protein expression began to increase at 48 h of culture. Our data suggested that the inhibition in CYP 17 and StAR genes by DAX-1 transcription factor may be associated with the decrease in androstenedione and progesterone production by theca cells during in vitro culture. Such an essential pathway for steroid production might indicate the importance of theca cell function in bovine ovary.


Androstenedione CYP 17 DAX-1 Luteinization Progesterone Theca cell 


  1. 1.
    Spicer LJ, Echternkamp SE (1986) Ovarian follicular growth, function and turnover in cattle: a review. J Anim Sci 62:428–451PubMedGoogle Scholar
  2. 2.
    Savio JD, Keenan L, Boland MP, Roche JF (1988) Pattern of growth of dominant follicles during the oestrous cycle in heifers. J Reprod Fertil 83:663–671PubMedGoogle Scholar
  3. 3.
    Sirois J, Fortune JE (1988) Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography. Biol Reprod 39:308–317PubMedCrossRefGoogle Scholar
  4. 4.
    Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244PubMedCrossRefGoogle Scholar
  5. 5.
    Fortune JE (1986) Bovine theca and granulosa cells interact to promote androgen production. Biol Reprod 35:292–299PubMedCrossRefGoogle Scholar
  6. 6.
    Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cell Biol 37:1344–1349PubMedCrossRefGoogle Scholar
  7. 7.
    Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehetner G, Rabl W, Schwarz HP, Kaplan JC, Camerino G, Meitinger T, Monaco AP (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372:672–676PubMedCrossRefGoogle Scholar
  8. 8.
    Wehrenberg U, Ivell R, Jansen M, von Goedecke S, Walther N (1994) Two orphan receptors binding to a common site are involved in the regulation of the oxytocin gene in the bovine ovary. Proc Natl Acad Sci USA 91:1440–1444PubMedCrossRefGoogle Scholar
  9. 9.
    Bakke M, Lund J (1995) Mutually exclusive interactions of two nuclear orphan receptors determine activity of a cyclic adenosine 3′,5′-monophosphate-responsive sequence in the bovine CYP17 gene. Mol Endocrinol 9:327–339PubMedCrossRefGoogle Scholar
  10. 10.
    Ikeda Y, Shen W, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8:654–662PubMedCrossRefGoogle Scholar
  11. 11.
    Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K (1994) Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787–2797PubMedGoogle Scholar
  12. 12.
    Liu Z, Simpson ER (1997) Steroidogenic factor 1 (SF-1) and SP1 are required for regulation of bovine CYP11A gene expression in bovine luteal cells and adrenal Y1 cells. Mol Endocrinol 11:127–137PubMedCrossRefGoogle Scholar
  13. 13.
    Mamluka R, Grebera Y, Meidan R (1999) Hormonal regulation of messenger ribonucleic acid expression for steroidogenic factor-1, steroidogenic acute regulatory protein, and cytochrome P450 side-chain cleavage in bovine luteal cells. Biol Reprod 60:628–634CrossRefGoogle Scholar
  14. 14.
    Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Saito I, Saruta T (2003) Regulation of differential COUP-TF-coregulator interactions in adrenal cortical steroidogenesis. J Steroid Biochem Mol Biol 85:449–456PubMedCrossRefGoogle Scholar
  15. 15.
    Allegrucci C, Hunter MG, Webb R, Luck MR (2003) Interaction of bovine granulosa and theca cells in a novel serum-free co-culture system. Reproduction 126:527–538PubMedCrossRefGoogle Scholar
  16. 16.
    Metcalf MG (1982) Estimation of viability of bovine granulosa cells. J Reprod Fertil 65:425–429PubMedCrossRefGoogle Scholar
  17. 17.
    Miyamoto A, Okuda K, Schweigert FJ, Schams D (1992) Effects of basic fibroblast growth factor, transforming growth factor-beta and nerve growth factor on the secretory function of the bovine corpus luteum in vitro. J Endocrinol 135:103–114PubMedCrossRefGoogle Scholar
  18. 18.
    Acosta TJ, Miyamoto A, Ozawa T, Wijayagunawardane MP, Sato K (1998) Local release of steroid hormones, prostaglandin E2, and endothelin-1 from bovine mature follicles In vitro: effects of luteinizing hormone, endothelin-1, and cytokines. Biol Reprod 59:437–443PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts AJ, Skinner MK (1990) Hormonal regulation of thecal cell function during antral follicle development in bovine ovaries. Endocrinology 127:2907–2917PubMedGoogle Scholar
  20. 20.
    Azhar S, Nomoto A, Leers-Sucheta S, Reaven E (1998) Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res 39:1616–1628PubMedGoogle Scholar
  21. 21.
    Orly J, Stocco DM (1999) The role of the steroidogenic acute regulatory (StAR) protein in female reproductive tissues. Horm Metab Res 31:389–398PubMedGoogle Scholar
  22. 22.
    Rao MC, Midgley Jr AR, Richards JS (1978) Hormonal regulation of ovarian cellular proliferation. Cell 14:71–78PubMedCrossRefGoogle Scholar
  23. 23.
    Buck PA, Schomberg DW (1987) A serum-free defined culture system which maintains follicle-stimulating hormone responsiveness and differentiation of porcine granulosa cells. Biol Reprod 36:167–174PubMedCrossRefGoogle Scholar
  24. 24.
    Simard J, Durocher F, Mebarki F, Turgeon C, Sanchez R, Labrie Y, Couet J, Trudel C, Rheaume E, Morel Y, Luu-The V, Labrie F (1996) Molecular biology and genetics of the 3β-hydroxysteroid dehydrogenase/Δ54 isomerase gene family. J Endocrinol 150:S189–S207PubMedGoogle Scholar
  25. 25.
    Mason JI, Keeney DS, Bird IM, Rainey WE, Morohashi K, Leers-Sucheta S, Melner MH (1997) The regulation of 3β-hydroxysteroid dehydrogenase expression. Steroids 62:164–168PubMedCrossRefGoogle Scholar
  26. 26.
    Mamluk R, Wolfenson D, Meidan R (1998) LH receptor mRNA and cytochrome P450 side-chain cleavage expression in bovine theca and granulosa cells luteinized by LH or forskolin. Domest Anim Endocrinol 15:103–114PubMedCrossRefGoogle Scholar
  27. 27.
    Sato Y, Suzuki T, Hidaka K, Sato H, Ito K, Ito S, Sasano H (2003) Immunolocalization of nuclear transcription factors, DAX-1 and COUP-TF II, in the normal human ovary: correlation with adrenal 4 binding protein/steroidogenic factor-1 immunolocalization during the menstrual cycle. J Clin Endocrinol Metab 88:3415–3420PubMedCrossRefGoogle Scholar
  28. 28.
    Lund J, Ahlgren R, Wu DH, Kagimoto M, Simpson ER, Waterman MR (1990) Transcriptional regulation of the bovine CYP17 (P-450(17)alpha) gene. Identification of two cAMP regulatory regions lacking the consensus cAMP-responsive element (CRE). J Biol Chem 265:3304–3312PubMedGoogle Scholar
  29. 29.
    Shibata H, Ando T, Kurihara I, Suzuki T, Kund J, Morohashi K, Sasano H, Hayashi K, Hayashi M, saito I, Saruta T (2000) Functional role of COUP-TF II, SF-1, and nuclear receptor coregulators in the steroidogenesis of adrenocortical adenomas. In: Okamoto M, Ishimura Y, Nawata H (eds) Molecular steroidogenesis. Universal Academy Press, Tokyo, pp 345–348Google Scholar
  30. 30.
    Hanley NA, Rainey WE, Wilson DI, Ball SG, Parker KL (2001) Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: potential interactions in gene regulation. Mol Endocrinol 15:57–68PubMedCrossRefGoogle Scholar
  31. 31.
    Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P (1997) DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature 390:311–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Chiaki Murayama
    • 1
  • Hitoshi Miyazaki
    • 2
  • Akio Miyamoto
    • 1
  • Takashi Shimizu
    • 1
  1. 1.Graduate School of Animal and Food HygieneObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Gene Research CenterUniversity of TsukubaTsukubaJapan

Personalised recommendations