Advertisement

Molecular and Cellular Biochemistry

, Volume 311, Issue 1–2, pp 111–119 | Cite as

Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes

  • Rupesh Dash
  • Mahitosh Mandal
  • Sudip K. Ghosh
  • S. C. KunduEmail author
Article

Abstract

The silk protein sericin has been identified as a potent antioxidant and photoprotective agent against ultraviolet B (UVB) irradiation in mouse skin model. In this study, we have investigated the anti-apoptotic effect of sericin in UVB (30 mJ/cm2)-irradiated human keratinocytes. Flow cytometry analysis has shown that pre-treatment with sericin inhibits UVB-induced apoptosis. The pre-treatment with sericin suppresses bax expression, up-regulates the expression of bcl-2, prevents both the activation of caspase-3 and cleavage of Poly (ADP-ribose) polymerase. Generation of intracellular hydrogen peroxide in UVB-treated keratinocytes is inhibited through pre-treatment with sericin suggesting that sericin probably prevents mitochondrial damage.

Keywords

Sericin Keratinocytes UVB H2O2 

Abbreviations

ROS

Reactive oxygen species

UVB

Ultraviolet B

MTT

Thiazolyl tetrazolium compound

H2O2

Hydrogen peroxide

DHR 123

Dihydrorhodamine 123

PARP

Poly (ADP-ribose) polymerase

Notes

Acknowledgments

The authors express gratitude to Dr. Gautam Banerjee, Hindustan Lever Limited, India, for his constant support for preparation of the manuscript. This work was financially supported by the Department of Science and Technology, Department of Biotechnology, Council for Scientific and Industrial Research, New Delhi. We are thankful to Directorate of Sericulture, Midnapore District, West Bengal State, and Central Silk Board, Bangiriposi, Orissa State, for providing the silk cocoons. R.D. also wishes to thank CSIR for fellowship.

Supplementary material

11010_2008_9702_MOESM1_ESM.pdf (39 kb)
(PDF 40 kb)

References

  1. 1.
    Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354PubMedCrossRefGoogle Scholar
  2. 2.
    Petit-Frere C, Capulas E, Lowe JE, Koulu L, Marttila RJ, Jaspers NG, Clingen PH, Green MH, Arlett CF (2000) Ultraviolet-B-induced apoptosis and cytokine release in Xeroderma pigmentosum keratinocytes. J Invest Dermatol 115:687–693PubMedCrossRefGoogle Scholar
  3. 3.
    De Gruijl FR, Sterenborg HJ, Forbes PD, Davies RE, Cole C, Kelfkens G, van Weelden H, Slaper H, van der Leun JC (1995) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53:53–60Google Scholar
  4. 4.
    Beissert S, Schwarz T (1999) Mechanisms involved in ultraviolet light-induced immunosuppression. J Investig Dermatol Symp Proc 4:61–64PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337:1419–1429PubMedCrossRefGoogle Scholar
  6. 6.
    Maalouf S, Sabban ME, Darwiche N, Muhtasib HG (2002) Protective effects of vitamin E on ultraviolet B light-induced damage in keratinocytes. Mol Carcinog 34:121–130PubMedCrossRefGoogle Scholar
  7. 7.
    Katiyar SK, Korman NJ, Mukhtar H, Agarwal R (1997) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89:556–566PubMedCrossRefGoogle Scholar
  8. 8.
    Wang CB, Huang MQ, Tao GL, Yu GY, Han ZW, Yang ZH, Wang YJ (2004) Polypeptide from Chlamys farreri protects HaCaT cells from UVB-induced apoptosis. Chem Biol Interact 147:119–127PubMedCrossRefGoogle Scholar
  9. 9.
    Jolly MS, Sen S, Ahsen MM (1974) Tasar culture. Ambika Publishers, Bombay, p 25Google Scholar
  10. 10.
    Gamo T, Inokuchi T, Laufer H (1977) Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem 7:285–295CrossRefGoogle Scholar
  11. 11.
    Kaplan D, Adams WW, Farmer B, Viney C (1994) Silk polymers: materials science and biotechnology. Wiley Publishers, New YorkGoogle Scholar
  12. 12.
    Takasu Y, Yamada H, Tsubochi K (2002) Isolation of three main sericin components from cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 66:2715–2718PubMedCrossRefGoogle Scholar
  13. 13.
    Dash R, Mukherjee S, Kundu SC (2006) Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical tasar silkworm, Antheraea mylitta. Int J Biol Macromol 38:255–258PubMedCrossRefGoogle Scholar
  14. 14.
    Dash R, Ghosh SK, Kaplan DL, Kundu SC (2007) Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp Biochem Physiol B Biochem Mol Biol 147:129–134PubMedCrossRefGoogle Scholar
  15. 15.
    Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M (1998) Silk protein sericin inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 62:145–147PubMedCrossRefGoogle Scholar
  16. 16.
    Sasaki M, Kato N, Watanabe H, Yamada H (2000) Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncol Rep 7:1049–1052PubMedGoogle Scholar
  17. 17.
    Zhaorigetu S, Sasaki M, Watanabe H, Kato N (2001) Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem 65:2181–2186PubMedCrossRefGoogle Scholar
  18. 18.
    Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N (2003) Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J Photochem Photobiol B: Biol 71:11–17CrossRefGoogle Scholar
  19. 19.
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148PubMedCrossRefGoogle Scholar
  20. 20.
    Sodhi A, Sethi G (2003) Involvement of MAP kinase signal transduction pathway in UVB-induced activation of macrophages in vitro. Immunol Lett 90:123–130PubMedCrossRefGoogle Scholar
  21. 21.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  22. 22.
    Mandal M, Maggirwar SB, Sharma N, Kaufmann SH, Sun SC, Kumar R (1996) Bcl-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and poly (ADP-ribose) polymerase and restores the NF-kappaB signaling pathway. J Biol Chem 271:30354–30359PubMedCrossRefGoogle Scholar
  23. 23.
    Mandal M, Younes M, Swan E, Samar A, Jasser A, Doan D, Yigitbasi O, McMurphey A, Ludwick J, El-Naggar AK, Bucana C, Mills GB, Myers JN (2006) The Akt inhibitor KP372-1 inhibits proliferation and induces apoptosis and anoikis in squamous cell carcinoma of the head and neck. Oral Oncol 42:430–439PubMedCrossRefGoogle Scholar
  24. 24.
    Wu WB, Chiang HS, Fang JY, Chen SK, Huang CC, Hung CF (2006) (+)-Catechin prevents ultraviolet B-induced human keratinocyte death via inhibition of JNK phosphorylation. Life Sci 79:801–807PubMedCrossRefGoogle Scholar
  25. 25.
    Pathak N, Khandelwal S (2007) Role of oxidative stress and apoptosis in cadmium induced thymic atrophy and splenomegaly in mice. Toxicol Lett 169:95–108PubMedCrossRefGoogle Scholar
  26. 26.
    Banerjee G, Gupta N, Kapoor A, Raman G (2005) UV induced bystander signaling leading to apoptosis. Cancer Lett 223:275–284PubMedCrossRefGoogle Scholar
  27. 27.
    Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwartz T (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182PubMedCrossRefGoogle Scholar
  28. 28.
    Kulms D, Schwarz T (2002) Independent contribution of three independent pathways to ultraviolet-B induced apoptosis. Biochem Pharmacol 64:837–841PubMedCrossRefGoogle Scholar
  29. 29.
    Assefa Z, Van Laethem A, Garmyn M, Agostinis P (2005) Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta 1755:90–106PubMedGoogle Scholar
  30. 30.
    Van Laethem A, Van Kelst S, Lippens S, Declercq W, Vandenabeele P, Janssens S, Vandenheede JR, Garmyn M, Agostinis P (2004) Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J 18:1946–1948PubMedGoogle Scholar
  31. 31.
    Chen HY, Zhu Li, Zhan SM, Han ZW, Du W, Wang YJ, Cui RY, Wang CB (2005) Polypeptide from Chlamys farreri inhibits murine thymocytes apoptosis and modulates UVB induced signaling pathway activation. Life Sci 77:768–779PubMedCrossRefGoogle Scholar
  32. 32.
    Shin MH, Rhie GE, Kim YK, Park CH, Cho KH, Kim KH, Eun HC, Chung JH (2005) H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J Invest Dermatol 125:221–229PubMedGoogle Scholar
  33. 33.
    Terada S, Nishimura T, Sasaki M, Yamada H, Miki M (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40:3–12CrossRefGoogle Scholar
  34. 34.
    Terada S, Sasaki M, Yanagihara K, Yamada H (2005) Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. J Biosci Bioeng 100:667–671PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Rupesh Dash
    • 1
  • Mahitosh Mandal
    • 2
  • Sudip K. Ghosh
    • 1
  • S. C. Kundu
    • 1
    Email author
  1. 1.Department of BiotechnologyIndian Institute of TechnologyKharagpurIndia
  2. 2.School of Medical Science and TechnologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations