Molecular and Cellular Biochemistry

, Volume 325, Issue 1–2, pp 15–23 | Cite as

Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells

  • Yi-Chang Cheng
  • Li-Mien Chen
  • Mu-Hsin Chang
  • Wei-Kung Chen
  • Fuu-Jen Tsai
  • Chang-Hai Tsai
  • Tung-Yuan Lai
  • Wei-Wen Kuo
  • Chih-Yang Huang
  • Chung-Jung Liu


Upregulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is associated with the development of myocardial infarction (MI), dilated cardiomyopathy, cardiac fibrosis, and heart failure (HF). Evidences suggest that lipopolysaccharide (LPS) participates in the inflammatory response in the cardiovascular system; however, it is unknown if LPS is sufficient to upregulate expressions and/or activity of uPA, tPA, MMP-2, and MMP-9 in myocardial cells. In this study, we treated H9c2 cardiomyoblasts with LPS to explore whether LPS upregulates uPA, tPA, MMP-2, and MMP-9, and further to identify the precise molecular and cellular mechanisms behind this upregulatory responses. Here, we show that LPS challenge increased the protein levels of uPA, MMP-2 and MMP-9, and induced the activity of MMP-2 and MMP-9 in H9c2 cardiomyoblasts. However, LPS showed no effects on the expression of tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor), and QNZ (NFκB inhibitor), the LPS-upregulated expression and/or activity of uPA, MMP-2, and MMP-9 in H9c2 cardiomyoblasts are markedly inhibited only by ERK1/2 inhibitors, U0126. Collectively, these results suggest that LPS upregulates the expression and/or activity of uPA, MMP-2, and MMP-9 through ERK1/2 signaling pathway in H9c2 cardiomyoblasts. Our findings further provide a link between the LPS-induced cardiac dysfunction and the ERK1/2 signaling pathway that mediates the upregulation of uPA, MMP-2 and MMP-9.


Lipopolysaccharide Myocardial cell uPA MMPs ERK1/2 signaling pathway 





Toll-like receptor


Extracellular signal regulated kinase

p38 MAPK

p38 Mitogen-activated protein kinase


c-Jun N-terminal kinase


Nuclear factor κ B


Urokinase plasminogen activator


Tissue plasminogen activator


Matrix metallopeptidase


Tissue inhibitor of metalloproteinases


Cyclosporine A


Dulbecco’s modified Eagle’s medium


Glyceraldehyde-3-phosphate dehydrogenase


Phosphate-buffered saline


6-Amino-4-(4-phenoxyphenylethylamino) quinazoline


Extracellular matrix


  1. 1.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392. doi: 10.1126/science.1067100 PubMedCrossRefGoogle Scholar
  2. 2.
    Ellerbroek SM, Stack MS (1999) Membrane associated matrix metalloproteinases in metastasis. Bioessays 21:940–949 doi: 10.1002/(SICI)1521-1878(199911)21:11<940::AID-BIES6>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  3. 3.
    Peterson JT, Li H, Dillon L et al (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46:307–315. doi: 10.1016/S0008-6363(00)00029-8 PubMedCrossRefGoogle Scholar
  4. 4.
    Heymans S, Luttun A, Nuyens D et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142. doi: 10.1038/13459 PubMedCrossRefGoogle Scholar
  5. 5.
    Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62. doi: 10.1172/JCI8768 PubMedCrossRefGoogle Scholar
  6. 6.
    Hayashidani S, Tsutsui H, Ikeuchi M et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235PubMedGoogle Scholar
  7. 7.
    Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46:214–224. doi: 10.1016/S0008-6363(00)00003-1 PubMedCrossRefGoogle Scholar
  8. 8.
    Creemers E, Cleutjens J, Smits J et al (2000) Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol 156:1865–1873PubMedGoogle Scholar
  9. 9.
    Heymans S, Lupu F, Terclavers S et al (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166:15–25PubMedGoogle Scholar
  10. 10.
    Bishopric NH, Andreka P, Slepak T et al (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1:141–150. doi: 10.1016/S1471-4892(01)00032-7 PubMedCrossRefGoogle Scholar
  11. 11.
    Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352PubMedGoogle Scholar
  12. 12.
    Zhu W, Zou Y, Aikawa R et al (1999) MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 100:2100–2107PubMedGoogle Scholar
  13. 13.
    Dhingra S, Sharma AK, Singla DK et al (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:H3524–H3531. doi: 10.1152/ajpheart.00919.2007 PubMedCrossRefGoogle Scholar
  14. 14.
    Wang M, Sankula R, Tsai BM et al (2004) P38 MAPK mediates myocardial proinflammatory cytokine production and endotoxin-induced contractile suppression. Shock 21:170–174. doi: 10.1097/01.shk.0000110623.20647.aa PubMedCrossRefGoogle Scholar
  15. 15.
    Meldrum DR, Dinarello CA, Cleveland JC et al (1998) Hydrogen peroxide induces tumor necrosis factor alpha-mediated cardiac injury by a P38 mitogen-activated protein kinase-dependent mechanism. Surgery 124:291–296 (discussion 297)PubMedGoogle Scholar
  16. 16.
    Dougherty CJ, Kubasiak LA, Prentice H et al (2002) Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571. doi: 10.1042/0264-6021:3620561 PubMedCrossRefGoogle Scholar
  17. 17.
    Minamino T, Yujiri T, Terada N et al (2002) MEKK1 is essential for cardiac hypertrophy and dysfunction induced by Gq. Proc Natl Acad Sci USA 99:3866–3871. doi: 10.1073/pnas.062453699 PubMedCrossRefGoogle Scholar
  18. 18.
    Boyd JH, Mathur S, Wang Y et al (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393. doi: 10.1016/j.cardiores.2006.09.011 PubMedCrossRefGoogle Scholar
  19. 19.
    Wilkins BJ, Molkentin JD (2002) Calcineurin and cardiac hypertrophy: where have we been? Where are we going? J Physiol 541:1–8. doi: 10.1113/jphysiol.2002.017129 PubMedCrossRefGoogle Scholar
  20. 20.
    Lakshmikuttyamma A, Selvakumar P, Kakkar R et al (2003) Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. J Cell Biochem 90:987–997. doi: 10.1002/jcb.10722 PubMedCrossRefGoogle Scholar
  21. 21.
    Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228. doi: 10.1016/S0092-8674(00)81573-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Yang RB, Mark MR, Gray A et al (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395:284–288. doi: 10.1038/26239 PubMedCrossRefGoogle Scholar
  23. 23.
    Stoll LL, Denning GM, Weintraub NL (2004) Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol 24:2227–2236. doi: 10.1161/01.ATV.0000147534.69062.dc PubMedCrossRefGoogle Scholar
  24. 24.
    Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1842. doi: 10.1016/S0140-6736(98)09286-1 PubMedCrossRefGoogle Scholar
  25. 25.
    Jardin F, Brun-Ney D, Auvert B et al (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–1060. doi: 10.1097/00003246-199010000-00001 PubMedCrossRefGoogle Scholar
  26. 26.
    Packer M (1995) Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 92:1379–1382PubMedGoogle Scholar
  27. 27.
    Yasuda S, Lew WY (1997) Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ Res 81:1011–1020PubMedGoogle Scholar
  28. 28.
    Mann DL, Spinale FG (1998) Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 98:1699–1702PubMedGoogle Scholar
  29. 29.
    Gunja-Smith Z, Morales AR, Romanelli R et al (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148:1639–1648PubMedGoogle Scholar
  30. 30.
    Tyagi SC (1997) Proteinases and myocardial extracellular matrix turnover. Mol Cell Biochem 168:1–12. doi: 10.1023/A:1006850903242 PubMedCrossRefGoogle Scholar
  31. 31.
    Tyagi SC, Kumar SG, Alla SR et al (1996) Extracellular matrix regulation of metalloproteinase and antiproteinase in human heart fibroblast cells. J Cell Physiol 167:137–147 doi: 10.1002/(SICI)1097-4652(199604)167:1<137::AID-JCP16>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Li H, Simon H, Bocan TM et al (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306. doi: 10.1016/S0008-6363(00)00028-6 PubMedCrossRefGoogle Scholar
  33. 33.
    Li YY, Feng YQ, Kadokami T et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97:12746–12751. doi: 10.1073/pnas.97.23.12746 PubMedCrossRefGoogle Scholar
  34. 34.
    Kubota T, McTiernan CF, Frye CS et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635PubMedGoogle Scholar
  35. 35.
    Goldberg GI, Marmer BL, Grant GA et al (1989) Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA 86:8207–8211. doi: 10.1073/pnas.86.21.8207 PubMedCrossRefGoogle Scholar
  36. 36.
    Roten L, Nemoto S, Simsic J et al (2000) Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol 32:109–120. doi: 10.1006/jmcc.1999.1052 PubMedCrossRefGoogle Scholar
  37. 37.
    Creemers EE, Davis JN, Parkhurst AM et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371PubMedGoogle Scholar
  38. 38.
    Mukherjee R, Parkhurst AM, Mingoia JT et al (2004) Myocardial remodeling after discrete radiofrequency injury: effects of tissue inhibitor of matrix metalloproteinase-1 gene deletion. Am J Physiol Heart Circ Physiol 286:H1242–H1247. doi: 10.1152/ajpheart.00437.2003 PubMedCrossRefGoogle Scholar
  39. 39.
    Fedak PW, Smookler DS, Kassiri Z et al (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 110:2401–2409. doi: 10.1161/01.CIR.0000134959.83967.2D PubMedCrossRefGoogle Scholar
  40. 40.
    Wagner DR, Combes A, McTiernan C et al (1998) Adenosine inhibits lipopolysaccharide-induced cardiac expression of tumor necrosis factor-alpha. Circ Res 82:47–56PubMedGoogle Scholar
  41. 41.
    Blum A, Sclarovsky S, Rehavia E, Shohat B (1994) Levels of T-lymphocyte subpopulations, interleukin-1 beta, and soluble interleukin-2 receptor in acute myocardial infarction. Am Heart J 127:1226–1230. doi: 10.1016/0002-8703(94)90040-X PubMedCrossRefGoogle Scholar
  42. 42.
    Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90:464–470. doi: 10.1136/hrt.2002.007005 PubMedCrossRefGoogle Scholar
  43. 43.
    Rauchhaus M, Doehner W, Francis DP et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067PubMedGoogle Scholar
  44. 44.
    Kumar A, Haery C, Parrillo JE (2000) Myocardial dysfunction in septic shock. Crit Care Clin 16:251–287. doi: 10.1016/S0749-0704(05)70110-X PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar A, Brar R, Wang P et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R276PubMedGoogle Scholar
  46. 46.
    Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397. doi: 10.1038/41131 PubMedCrossRefGoogle Scholar
  47. 47.
    Methe H, Kim JO, Kofler S et al (2005) Expansion of circulating Toll-like receptor 4-positive monocytes in patients with acute coronary syndrome. Circulation 111:2654–2661. doi: 10.1161/CIRCULATIONAHA.104.498865 PubMedCrossRefGoogle Scholar
  48. 48.
    Liu CJ, Cheng YC, Lee KW et al (2008) Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol Cell Biochem 313:167–178. doi: 10.1007/s11010-008-9754-0 PubMedCrossRefGoogle Scholar
  49. 49.
    Baumgarten G, Knuefermann P, Nozaki N et al (2001) In vivo expression of proinflammatory mediators in the adult heart after endotoxin administration: the role of toll-like receptor-4. J Infect Dis 183:1617–1624. doi: 10.1086/320712 PubMedCrossRefGoogle Scholar
  50. 50.
    Li C, Ha T, Kelley J et al (2004) Modulating Toll-like receptor mediated signaling by (1–3)-beta-D-glucan rapidly induces cardioprotection. Cardiovasc Res 61:538–547. doi: 10.1016/j.cardiores.2003.09.007 PubMedCrossRefGoogle Scholar
  51. 51.
    Ravingerova T, Barancik M, Strniskova M (2003) Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138. doi: 10.1023/A:1024119224033 PubMedCrossRefGoogle Scholar
  52. 52.
    Baines CP, Molkentin JD (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62. doi: 10.1016/j.yjmcc.2004.11.004 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Yi-Chang Cheng
    • 1
  • Li-Mien Chen
    • 2
  • Mu-Hsin Chang
    • 3
  • Wei-Kung Chen
    • 4
  • Fuu-Jen Tsai
    • 5
  • Chang-Hai Tsai
    • 6
  • Tung-Yuan Lai
    • 7
  • Wei-Wen Kuo
    • 8
  • Chih-Yang Huang
    • 7
    • 9
    • 10
  • Chung-Jung Liu
    • 7
  1. 1.Emergency DepartmentTaichung Veterans General HospitalTaichungTaiwan
  2. 2.Division of Medical Technology, Department of Internal MedicineArmed-Force Taichung General HospitalTaichungTaiwan
  3. 3.Division of CardiologyArmed-Force Taichung General HospitalTaichungTaiwan
  4. 4.Emergency DepartmentChina Medical University HospitalTaichungTaiwan
  5. 5.Department of PediatricsMedical Research and Medical Genetics, China Medical UniversityTaichungTaiwan
  6. 6.Department of Healthcare AdministrationAsia UniversityTaichungTaiwan
  7. 7.Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
  8. 8.Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
  9. 9.Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
  10. 10.Department of Health and Nutrition BiotechnologyAsia UniversityTaichungTaiwan

Personalised recommendations