Molecular and Cellular Biochemistry

, Volume 326, Issue 1–2, pp 55–66

The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response

  • Mikhail Y. Golovko
  • Gwendolyn Barceló-Coblijn
  • Paula I. Castagnet
  • Susan Austin
  • Colin K. Combs
  • Eric J. Murphy


α-Synuclein (Snca) is an abundant small cytosolic protein (140 amino acids) that is expressed in the brain, although its physiological role is poorly defined. Consistent with its ubiquitous distribution in the brain, we and others have established a role for Snca in brain lipid metabolism and downstream events such as neuroinflammation. In astrocytes, Snca is important for fatty acid uptake and trafficking, where its deletion decreases 16:0 and 20:4n-6 uptake and alters targeting to specific lipid pools. Although Snca has no impact on 22:6n-3 uptake into astrocytes, it is important for its targeting to lipid pools. Similar results for fatty acid uptake from the plasma are seen in studies using whole mice coupled with steady-state kinetic modeling. We demonstrate in gene-ablated mice a significant reduction in the incorporation rate of 20:4n-6 into brain phospholipid pools due to reduced recycling of 20:4n-6 through the ER-localized long-chain acyl-CoA synthetases (Acsl). This reduction results in a compensatory increase in the incorporation rate of 22:6n-3 into brain phospholipids. Snca is also important for brain and astrocyte cholesterol metabolism, where its deletion results in an elevation of cholesterol and cholesteryl esters. This increase may be due to the interaction of Snca with membrane-bound enzymes involved in lipid metabolism such as Acsl. Snca is critical in modulating brain prostanoid formation and microglial activities. In the absence of Snca, microglia are basally activated and demonstrate increased proinflammatory cytokine secretion. Thus, Snca, through its modulation of brain lipid metabolism, has a critical role in brain inflammatory responses.


Acyl-CoA synthetase α-Synuclein Arachidonic acid Cholesterol Cholesteryl esters Docosahexaenoic acid Fatty acid metabolism Palmitic acid Triacylglycerol 


  1. 1.
    Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345:27–32. doi:10.1016/0014-5793(94)00395-5 PubMedGoogle Scholar
  2. 2.
    Lavedan C (1998) The synuclein family. Genome Res 8:871–880PubMedGoogle Scholar
  3. 3.
    Iwai A, Masliah E, Yoshimoto M et al (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475. doi:10.1016/0896-6273(95)90302-X PubMedGoogle Scholar
  4. 4.
    Shibayama-Imazu T, Okahashi I, Omata K et al (1993) Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res 622:17–25. doi:10.1016/0006-8993(93)90796-P PubMedGoogle Scholar
  5. 5.
    Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286. doi:10.1073/pnas.90.23.11282 PubMedGoogle Scholar
  6. 6.
    Lucking CB, Brice A (2000) Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci 57:1894–1908. doi:10.1007/PL00000671 PubMedGoogle Scholar
  7. 7.
    Nakamura T, Yamashita H, Takahashi T et al (2001) Activated Fyn phosphorylates α-synuclein at tyrosine residue 125. Biochem Biophys Res Commun 280:1085–1092. doi:10.1006/bbrc.2000.4253 PubMedGoogle Scholar
  8. 8.
    Ellis CE, Schwartzberg PL, Grider TL et al (2001) Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J Biol Chem 276:3879–3884. doi:10.1074/jbc.M010316200 PubMedGoogle Scholar
  9. 9.
    Takahashi T, Yamashita H, Nagano Y et al (2003) Identification and characterization of a novel Pyk2/related adhesion focal tyrosine kinase-associated protein that inhibits alpha-synuclein phosphorylation. J Biol Chem 278:42225–42233. doi:10.1074/jbc.M213217200 PubMedGoogle Scholar
  10. 10.
    Pronin AN, Morris AJ, Surguchov A et al (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275:26515–26522. doi:10.1074/jbc.M003542200 PubMedGoogle Scholar
  11. 11.
    Negro A, Brunati AM, Donella-Deana A et al (1997) Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 16:210–212Google Scholar
  12. 12.
    Okochi M, Walter J, Koyama A et al (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275:390–397. doi:10.1074/jbc.275.1.390 PubMedGoogle Scholar
  13. 13.
    Yamada M, Iwatsubo T, Mizuno Y et al (2004) Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of α-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91:451–461. doi:10.1111/j.1471-4159.2004.02728.x PubMedGoogle Scholar
  14. 14.
    Davidson WS, Jonas A, Clayton DF et al (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449. doi:10.1074/jbc.273.16.9443 PubMedGoogle Scholar
  15. 15.
    Zhu M, Fink AL (2003) Lipid binding inhibits α-synuclein fibril formation. J Biol Chem 278:16873–16877. doi:10.1074/jbc.M210136200 PubMedGoogle Scholar
  16. 16.
    Ulmer TS, Bax A, Cole NB et al (2005) Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem 280:9595–9603. doi:10.1074/jbc.M411805200 PubMedGoogle Scholar
  17. 17.
    Narayanan V, Scarlata S (2001) Membrane binding and self-association of α-synucleins. Biochemistry 40:9927–9934. doi:10.1021/bi002952n PubMedGoogle Scholar
  18. 18.
    Jensen PH, Nielsen MS, Jakes R et al (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294. doi:10.1074/jbc.273.41.26292 PubMedGoogle Scholar
  19. 19.
    Murphy DD, Rueter SM, Trojanowski JQ et al (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220PubMedGoogle Scholar
  20. 20.
    Cabin DE, Shimazu K, Murphy D et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J Neurosci 22:8797–8807PubMedGoogle Scholar
  21. 21.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized in the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815PubMedGoogle Scholar
  22. 22.
    Jo E, McLaurin J, Yip CM et al (2000) α-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334. doi:10.1074/jbc.M004345200 PubMedGoogle Scholar
  23. 23.
    McLean PJ, Ribich S, Hyman BT (2000) Subcellular localization of alpha-synuclein in primary neuronal cultures: effect of missense mutations. J Neural Transm Suppl (58):53–63Google Scholar
  24. 24.
    Mori F, Tanji K, Yoshimoto M et al (2002) Demonstration of α-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinkinase K and formic acid pretreatment. Exp Neurol 176:98–104. doi:10.1006/exnr.2002.7929 PubMedGoogle Scholar
  25. 25.
    Ziolkowska B, Gieryk A, Bilecki W et al (2005) Regulation of α-synuclein expression in limbic and motor brain regions of morphine-treated mice. J Neurosci 25:4996–5003. doi:10.1523/JNEUROSCI.4376-04.2005 PubMedGoogle Scholar
  26. 26.
    Cheng SY, Trombetta LD (2004) The induction of amyloid precursor protein and α-synuclein in rat hippocampal astrocytes by diethyldithiocarbamate and copper with or without glutathione. Toxicol Lett 146:139–149. doi:10.1016/j.toxlet.2003.09.009 PubMedGoogle Scholar
  27. 27.
    Castagnet PI, Golovko MY, Barceló-Coblijn G et al (2005) Fatty acid incorporation is decreased in astrocytes cultured from α-synuclein gene-ablated mice. J Neurochem 94:839–849. doi:10.1111/j.1471-4159.2005.03247.x PubMedGoogle Scholar
  28. 28.
    Papadopoulos D, Ewans L, Pham-Dinh D et al (2006) Upregulation of α-synuclein in neurons and glia in inflammatory demyelinating disease. Mol Cell Neurosci 31:597–612. doi:10.1016/j.mcn.2006.01.007 PubMedGoogle Scholar
  29. 29.
    Austin SA, Floden AM, Murphy EJ et al (2006) α-Synuclein expression modulates microglial activation phenotype. J Neurosci 26:10558–10563. doi:10.1523/JNEUROSCI.1799-06.2006 PubMedGoogle Scholar
  30. 30.
    Richter-Landsberg C, Gorath M, Trojanowski JQ et al (2000) Alpha-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J Neurosci Res 62:9–14. doi:10.1002/1097-4547(20001001)62:1<9::AID-JNR2>3.0.CO;2-UPubMedGoogle Scholar
  31. 31.
    Sharon R, Goldberg MS, Bar-Josef I et al (2001) α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci USA 98:9110–9115. doi:10.1073/pnas.171300598 PubMedGoogle Scholar
  32. 32.
    Golovko MY, Rosenberger TA, Færgeman NJ et al (2006) Acyl-CoA synthetase activity links wild-type but not mutant α-synuclein to brain arachidonate metabolism. Biochemistry 45:6956–6966. doi:10.1021/bi0600289 PubMedGoogle Scholar
  33. 33.
    George JM, Jin H, Woods WS (1995) Characterization of a novel protein regulated during the critical period for song learning in the Zebra Finch. Neuron 15:361–372. doi:10.1016/0896-6273(95)90040-3 PubMedGoogle Scholar
  34. 34.
    Kahle PJ, Neumann M, Ozman L et al (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373PubMedGoogle Scholar
  35. 35.
    Dalfó E, Gómez-Isla T, Rosa JL et al (2004) Abnormal α-synuclein interactions with Rab proteins in α-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63:302–313PubMedGoogle Scholar
  36. 36.
    Ostrerova N, Petrucelli L, Farrer M et al (1999) α-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791PubMedGoogle Scholar
  37. 37.
    Souza JM, Giasson BI, Lee VMY et al (2000) Chaperone-like activity of synuclein. FEBS Lett 474:116–119. doi:10.1016/S0014-5793(00)01563-5 PubMedGoogle Scholar
  38. 38.
    Lee FJS, Lui F, Pristupa ZB et al (2001) Direct binding and functional coupling of α-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916–926. doi:10.1096/fj.00-0334com PubMedGoogle Scholar
  39. 39.
    Wersinger C, Sidhu A (2003) Attenuation of dopamine transporter activity by α-synuclein. Neurosci Lett 340:189–192. doi:10.1016/S0304-3940(03)00097-1 PubMedGoogle Scholar
  40. 40.
    Sidhu A, Wersinger C, Vernier P (2004) α-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson’s disease. FEBS Lett 565:1–5. doi:10.1016/j.febslet.2004.03.063 PubMedGoogle Scholar
  41. 41.
    Perez RG, Waymire JC, Lin E et al (2002) A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099PubMedGoogle Scholar
  42. 42.
    Golovko MY, Murphy EJ (2008) Brain prostaglandin formation is increased by α-synuclein gene-ablation during global ischemia. Neurosci Lett 432:243–247. doi:10.1016/j.neulet.2007.12.031 PubMedGoogle Scholar
  43. 43.
    Golovko MY, Færgeman NJ, Cole NB et al (2005) α-Synuclein gene-deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of α-synuclein palmitate binding. Biochemistry 44:8251–8259. doi:10.1021/bi0502137 PubMedGoogle Scholar
  44. 44.
    Golovko MY, Rosenberger TA, Feddersen S et al (2007) α-Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem 101:201–211. doi:10.1111/j.1471-4159.2006.04357.x PubMedGoogle Scholar
  45. 45.
    Barceló-Coblijn G, Golovko MY, Weinhofer I et al (2007) Brain neutral lipids mass is increased in α-synuclein gene-ablated mice. J Neurochem 101:132–141. doi:10.1111/j.1471-4159.2006.04348.x PubMedGoogle Scholar
  46. 46.
    Sharon R, Bar-Joseph I, Mirick GE et al (2003) Altered fatty acid composition of dopaminergic neurons expressing α-synuclein and human brains with α-synucleinopathies. J Biol Chem 278:49874–49881. doi:10.1074/jbc.M309127200 PubMedGoogle Scholar
  47. 47.
    Payton JE, Perrin RJ, Woods WS et al (2004) Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol 337:1001–1009. doi:10.1016/j.jmb.2004.02.014 PubMedGoogle Scholar
  48. 48.
    Jenco JM, Rawlingson A, Daniels B et al (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37:4901–4909. doi:10.1021/bi972776r PubMedGoogle Scholar
  49. 49.
    Narayanan V, Guo Y, Scarlata S (2005) Fluorescence studies suggest a role for α-synuclein in the phosphatidylinositol lipid signaling pathway. Biochemistry 44:462–470. doi:10.1021/bi0487140 PubMedGoogle Scholar
  50. 50.
    Cooper AA, Gitler AD, Cashikar A et al (2006) α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462 PubMedGoogle Scholar
  51. 51.
    Chandra S, Gallardo G, Fernández-Chacón R et al (2005) α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123:383–396. doi:10.1016/j.cell.2005.09.028 PubMedGoogle Scholar
  52. 52.
    Lücke C, Gantz DL, Klimtchuk E et al (2006) Interactions between fatty acids and α-synuclein. J Lipid Res 47:1714–1724. doi:10.1194/jlr.M600003-JLR200 PubMedGoogle Scholar
  53. 53.
    Richieri GV, Ogata RT, Kleinfeld AM (1994) Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269:23918–23930PubMedGoogle Scholar
  54. 54.
    Richieri GV, Ogata RT, Zimmerman AW et al (2000) Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 39:7197–7204. doi:10.1021/bi000314z PubMedGoogle Scholar
  55. 55.
    Murphy EJ, Owada Y, Kitanaka N et al (2005) Brain arachidonic acid incorporation is decreased in heart-fatty acid binding protein gene-ablated mice. Biochemistry 44:6350–6360. doi:10.1021/bi047292r PubMedGoogle Scholar
  56. 56.
    Murphy EJ, Prows D, Jefferson JR et al (1996) Liver fatty acid binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta 1301:191–196PubMedGoogle Scholar
  57. 57.
    Murphy EJ (1998) Fatty acid binding protein expression increases NBD-stearate uptake and cytoplasmic diffusion in L cells. Am J Physiol 275:244–249Google Scholar
  58. 58.
    Murphy EJ, Prows D, Stiles T et al (2000) Phospholipid and phospholipid fatty acid composition of L-cell fibroblast: effect of intestinal and liver fatty acid binding proteins. Lipids 35:729–738. doi:10.1007/s11745-000-0579-x PubMedGoogle Scholar
  59. 59.
    Murphy EJ, Barceló-Coblijn G, Binas B et al (2004) Heart fatty acid uptake is decreased in heart fatty acid binding protein gene-ablated mice. J Biol Chem 279:34481–34488. doi:10.1074/jbc.M314263200 PubMedGoogle Scholar
  60. 60.
    Prows DR, Murphy EJ, Schroeder F (1995) Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cell fibroblasts. Lipids 30:907–910. doi:10.1007/BF02537481 PubMedGoogle Scholar
  61. 61.
    Binas B, Danneberg H, McWhir J et al (1999) Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 13:805–812PubMedGoogle Scholar
  62. 62.
    Schaap FG, Binas B, Danneberg H et al (1999) Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res 85:329–337PubMedGoogle Scholar
  63. 63.
    Prows DR, Murphy EJ, Moncecchi D et al (1996) Intestinal fatty acid-binding protein expression stimulates fibroblast fatty acid esterification. Chem Phys Lipids 84:47–56. doi:10.1016/S0009-3084(96)02619-9 PubMedGoogle Scholar
  64. 64.
    Ellis CE, Murphy EJ, Mitchell DC et al (2005) Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol 25:10190–10201. doi:10.1128/MCB.25.22.10190-10201.2005 PubMedGoogle Scholar
  65. 65.
    Robinson PJ, Noronha J, DeGeorge JJ et al (1992) A quantitative method for measuring regional in vivo fatty acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214. doi:10.1016/0165-0173(92)90016-F PubMedGoogle Scholar
  66. 66.
    Ahn BH, Rhim H, Kim SY et al (2002) α-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem 277:12334–12342. doi:10.1074/jbc.M110414200 PubMedGoogle Scholar
  67. 67.
    Outeiro TF, Lindquist S (2003) Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302:1772–1775. doi:10.1126/science.1090439 PubMedGoogle Scholar
  68. 68.
    Scherzer CR, Jensen RV, Gullans SR et al (2003) Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s disease. Hum Mol Genet 12:2457–2466. doi:10.1093/hmg/ddg265 PubMedGoogle Scholar
  69. 69.
    Rosenberger TA, Villacreses NE, Contreras MA et al (2003) Brain lipid metabolism in the cPLA2 knockout mouse. J Lipid Res 44:109–117. doi:10.1194/jlr.M200298-JLR200 PubMedGoogle Scholar
  70. 70.
    Lesa GM, Palfreyman M, Hall DH et al (2003) Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116:4965–4975. doi:10.1242/jcs.00918 PubMedGoogle Scholar
  71. 71.
    Bazan NG (2003) Synaptic lipid signaling: significance of polyunsaturated fatty acid and platelet-activating factor. J Lipid Res 44:2221–2233. doi:10.1194/jlr.R300013-JLR200 PubMedGoogle Scholar
  72. 72.
    Williams JH, Errington ML, Lynch MA et al (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742. doi:10.1038/341739a0 PubMedGoogle Scholar
  73. 73.
    Wolf MJ, Izumi Y, Zorumski CF et al (1995) Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 377:358–362. doi:10.1016/0014-5793(95)01371-7 PubMedGoogle Scholar
  74. 74.
    Massicotte G, Vanderklish P, Lynch G et al (1991) Modulation of a dl-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation. Proc Natl Acad Sci USA 88:1893–1897. doi:10.1073/pnas.88.5.1893 PubMedGoogle Scholar
  75. 75.
    Lee H, Villacreses NE, Rapoport SI et al (2004) In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation. J Neurochem 91:936–945. doi:10.1111/j.1471-4159.2004.02786.x PubMedGoogle Scholar
  76. 76.
    Bazan NG (1971) Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia. J Neurochem 18:1379–1385. doi:10.1111/j.1471-4159.1971.tb00002.x PubMedGoogle Scholar
  77. 77.
    Rosenberger TA, Villacreses NE, Hovda JT et al (2004) Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88:1168–1178. doi:10.1046/j.1471-4159.2003.02246.x PubMedGoogle Scholar
  78. 78.
    Arai K, Ikegaya Y, Nakatani Y et al (2001) Phospholipase A2 mediates ischemic injury in the hippocampus: a regional difference of neuronal vulnerability. Eur J Neurosci 13:2319–2323. doi:10.1046/j.0953-816x.2001.01623.x PubMedGoogle Scholar
  79. 79.
    Fujino T, Yamamoto T (1992) Cloning and functional expression of a novel long-chain acyl-CoA synthetase expression in brain. J Biochem 111:197–203PubMedGoogle Scholar
  80. 80.
    Fujino T, Kang M-J, Suzuki H et al (1996) Molecular characterization and expression of rat acyl-CoA synthetase 3. J Biol Chem 271:16748–16752. doi:10.1074/jbc.271.28.16748 PubMedGoogle Scholar
  81. 81.
    Suzuki H, Kawarabayasi Y, Kondo J et al (1990) Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem 265:8681–8685PubMedGoogle Scholar
  82. 82.
    Kang M-J, Fujino T, Sasano H et al (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA 94:2880–2884. doi:10.1073/pnas.94.7.2880 PubMedGoogle Scholar
  83. 83.
    Cao Y, Murphy KJ, McIntyre TM et al (2000) Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett 467:263–267. doi:10.1016/S0014-5793(00)01159-5 PubMedGoogle Scholar
  84. 84.
    Van Horn CG, Caviglia JM, Li LO et al (2005) Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1642. doi:10.1021/bi047721l PubMedGoogle Scholar
  85. 85.
    Herrmann T, Buchkremer F, Gosch I et al (2001) Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270:31–40. doi:10.1016/S0378-1119(01)00489-9 PubMedGoogle Scholar
  86. 86.
    Hall AM, Wiczer BM, Herrmann T et al (2005) Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 280:11948–11954. doi:10.1074/jbc.M412629200 PubMedGoogle Scholar
  87. 87.
    Marszalek JR, Kitidis C, DiRusso CC et al (2005) Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem 280:10817–10826. doi:10.1074/jbc.M411750200 PubMedGoogle Scholar
  88. 88.
    Igal RA, Wang P, Coleman RA (1997) Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA. Biochem J 324:529–534PubMedGoogle Scholar
  89. 89.
    Muoio DM, Lewin TM, Wiedmer P et al (2000) Acyl-CoAs are functionally channeled in liver: potential role of acyl-CoA synthetase. Am J Physiol Endocrinol Metab 279:E1366–E1373PubMedGoogle Scholar
  90. 90.
    Marszalek JR, Kitidis C, Dararutana A et al (2004) Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth. J Biol Chem 279:23882–23891. doi:10.1074/jbc.M313460200 PubMedGoogle Scholar
  91. 91.
    Poirier J, Baccichet A, Dea D et al (1993) Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 55:81–90. doi:10.1016/0306-4522(93)90456-P PubMedGoogle Scholar
  92. 92.
    Dietschy JM, Turley SD (2004) Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397. doi:10.1194/jlr.R400004-JLR200 PubMedGoogle Scholar
  93. 93.
    Murphy EJ, Schroeder F (1997) Sterol carrier protein-2 mediated cholesterol esterification in transfected L-cell fibroblasts. Biochim Biophys Acta 1345:283–292PubMedGoogle Scholar
  94. 94.
    Mauch DH, Nägler K, Schumacher S et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357. doi:10.1126/science.294.5545.1354 PubMedGoogle Scholar
  95. 95.
    Saher G, Brugger B, Lappe-Seifke C et al (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475PubMedGoogle Scholar
  96. 96.
    Sun GY, Horrocks LA (1973) Metabolism of palmitic acid in the subcellular fractions of mouse brain. J Lipid Res 14:206–214PubMedGoogle Scholar
  97. 97.
    Shobab LA, Hsiung G-YR, Feldman HH (2005) Cholesterol in Alzheimer’s disease. Lancet Neurol 4:841–852. doi:10.1016/S1474-4422(05)70248-9 PubMedGoogle Scholar
  98. 98.
    Karten B, Vance DE, Campenot RB (2002) Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann-Pick C1-deficient neurons. J Neurochem 83:1154–1163. doi:10.1046/j.1471-4159.2002.01220.x PubMedGoogle Scholar
  99. 99.
    Sipione S, Rigamonti D, Valenza M et al (2002) Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 11:1953–1965. doi:10.1093/hmg/11.17.1953 PubMedGoogle Scholar
  100. 100.
    Johnson CC, Gorell JM, Rybicki BA et al (1999) Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol 28:1102–1109. doi:10.1093/ije/28.6.1102 PubMedGoogle Scholar
  101. 101.
    Bar-On P, Rockenstein E, Adame A et al (2006) Effects of the cholesterol-lowering compound methyl-β-cyclodextrin in models of α-synucleinopathy. J Neurochem 98:1032–1045. doi:10.1111/j.1471-4159.2006.04017.x PubMedGoogle Scholar
  102. 102.
    Mori F, Hayashi S, Yamagishi SI et al (2002) Pick’s disease: α- and β-synuclein-immunoreactive Pick bodies in the dentate gyrus. Acta Neuropathol 104:455–461PubMedGoogle Scholar
  103. 103.
    Saito Y, Suzuki K, Hulette CM et al (2004) Aberrant phosphorylation of α-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol 63:323–328PubMedGoogle Scholar
  104. 104.
    Tamo W, Imaizumi T, Tanji K et al (2002) Expression of α-synuclein, the precursor of non-amyloid β component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neurosci Lett 326:5–8. doi:10.1016/S0304-3940(02)00297-5 PubMedGoogle Scholar
  105. 105.
    Edmond J, Korsak RA, Morrow JW et al (1991) Dietary cholesterol and the origin of cholesterol in the brain of developing rats. J Nutr 121:1323–1330PubMedGoogle Scholar
  106. 106.
    Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64:895–901PubMedGoogle Scholar
  107. 107.
    Pfrieger FW (2003) Role of cholesterol in synapse formation and function. Biochim Biophys Acta 1610:271–280. doi:10.1016/S0005-2736(03)00024-5 PubMedGoogle Scholar
  108. 108.
    Nagler K, Mauch DH, Pfrieger FW (2001) Glia-derived signals induce synapse formation in neurons of the rat central nervous system. J Physiol 533:665–679. doi:10.1111/j.1469-7793.2001.00665.x PubMedGoogle Scholar
  109. 109.
    Stefkova J, Poledne R, Hubacek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53:235–243PubMedGoogle Scholar
  110. 110.
    Andersson S, Gustafsson N, Warner M (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci USA 102:3857–3862. doi:10.1073/pnas.0500634102 PubMedGoogle Scholar
  111. 111.
    Hayashi H, Campenot RB, Vance DE et al (2004) Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem 279:14009–14015. doi:10.1074/jbc.M313828200 PubMedGoogle Scholar
  112. 112.
    Karten B, Campenot RB, Vance DE et al (2006) Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia. J Biol Chem 281:4049–4057. doi:10.1074/jbc.M508915200 PubMedGoogle Scholar
  113. 113.
    Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 16:193–212. doi:10.1016/j.semcdb.2005.01.005 PubMedGoogle Scholar
  114. 114.
    Gong J-S, Kobayashi M, Hayashi H et al (2002) Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 277:29919–29926. doi:10.1074/jbc.M203934200 PubMedGoogle Scholar
  115. 115.
    Wahrle SE, Jiang H, Parsadanian M et al (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993. doi:10.1074/jbc.M407963200 PubMedGoogle Scholar
  116. 116.
    Koch S, Donarski N, Goetze K et al (2001) Characterization of four lipoprotein classes in human cerebrospinal fluid. J Lipid Res 42:1143–1151PubMedGoogle Scholar
  117. 117.
    LaDu MJ, Reardon C, Van Eldik L et al (2000) Lipoproteins in the central nervous system. Ann N Y Acad Sci 903:167–175. doi:10.1111/j.1749-6632.2000.tb06365.x PubMedGoogle Scholar
  118. 118.
    Ito J-I, Zhang L-Y, Asai M (1999) Differential generation of high-density lipoprotein by endogenous and exogenous apolipoproteins in cultured fetal rat astrocytes. J Neurochem 72:2362–2369. doi:10.1046/j.1471-4159.1999.0722362.x PubMedGoogle Scholar
  119. 119.
    Abildayeva K, Jansen PJ, Hirsch-Reinshagen V et al (2006) 24(S)-Hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281:12799–12808. doi:10.1074/jbc.M601019200 PubMedGoogle Scholar
  120. 120.
    Lund EG, Xie C, Kotti T et al (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278:22980–22988. doi:10.1074/jbc.M303415200 PubMedGoogle Scholar
  121. 121.
    Meaney S, Heverin M, Panzenboeck U et al (2007) Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7α-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res 48:944–951. doi:10.1194/jlr.M600529-JLR200 PubMedGoogle Scholar
  122. 122.
    Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999–1016. doi:10.2174/1381612053381620 PubMedGoogle Scholar
  123. 123.
    McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10:S3–S7. doi:10.1016/j.parkreldis.2004.01.005 PubMedGoogle Scholar
  124. 124.
    Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318:149–161. doi:10.1007/s00441-004-0944-0 PubMedGoogle Scholar
  125. 125.
    Croisier E, Moran LB, Dexter DT et al (2005) Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflamm 2:14. doi:10.1186/1742-2094-2-14 Google Scholar
  126. 126.
    Imamura K, Hishikawa N, Sawada M et al (2005) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526. doi:10.1007/s00401-003-0766-2 Google Scholar
  127. 127.
    Ouchi Y, Yoshikawa E, Sekine Y et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175. doi:10.1002/ana.20338 PubMedGoogle Scholar
  128. 128.
    McGeer PL, Schwab C, Parent A et al (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine administration. Ann Neurol 54:599–604. doi:10.1002/ana.10728 PubMedGoogle Scholar
  129. 129.
    Barcia C, Sanchez Bahillo A, Fernandez-Villalba E et al (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409. doi:10.1002/glia.20015 PubMedGoogle Scholar
  130. 130.
    Zhang W, Wang T, Pei Z et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progressing in Parkinson’s disease. FASEB J 19:533–542. doi:10.1096/fj.04-2751com PubMedGoogle Scholar
  131. 131.
    Takeuchi H, Mizuno T, Zhang G et al (2005) Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280:10444–10454. doi:10.1074/jbc.M413863200 PubMedGoogle Scholar
  132. 132.
    Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434. doi:10.1002/glia.20207 PubMedGoogle Scholar
  133. 133.
    Mirza B, Hadberg H, Thomsen P et al (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432. doi:10.1016/S0306-4522(99)00455-8 PubMedGoogle Scholar
  134. 134.
    Forno LS, DeLanney LE, Irwin I et al (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436. doi:10.1016/S0079-6123(08)61770-7 PubMedGoogle Scholar
  135. 135.
    Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6. doi:10.1016/0306-4522(93)90175-F PubMedGoogle Scholar
  136. 136.
    Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebsak I et al (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143. doi:10.1006/neur.1996.0020 PubMedGoogle Scholar
  137. 137.
    Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebsak I et al (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180. doi:10.1016/S0162-3109(98)00022-8 PubMedGoogle Scholar
  138. 138.
    Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409. doi:10.1038/70978 PubMedGoogle Scholar
  139. 139.
    Sheng JG, Shirabe S, Nishiyama N et al (1993) Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp Brain Res 95:450–456. doi:10.1007/BF00227138 PubMedGoogle Scholar
  140. 140.
    Saura J, Parés M, Bové J et al (2003) Intranigral infusion of interleukin-1β activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem 83:651–661CrossRefGoogle Scholar
  141. 141.
    Narcisse L, Scemes E, Zhao Y et al (2005) The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49:245–258. doi:10.1002/glia.20110 PubMedGoogle Scholar
  142. 142.
    Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24:8068–8074. doi:10.1523/JNEUROSCI.2419-04.2004 PubMedGoogle Scholar
  143. 143.
    Ballerini P, Ciccarelli R, Caciagli F et al (2005) P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 18:417–430PubMedGoogle Scholar
  144. 144.
    Iyer SS, Barton JA, Bourgoin S et al (2004) Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J Immunol 173:2615–2623PubMedGoogle Scholar
  145. 145.
    Serrander L, Fallman M, Stendahl O (1996) Activation of phospholipase D is an early event in integrin-mediated signalling leading to phagocytosis in human neutrophils. Inflammation 20:439–450. doi:10.1007/BF01486745 PubMedGoogle Scholar
  146. 146.
    Powner DJ, Payne RM, Pettitt TR et al (2005) Phospholipase D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase l Γ b. J Cell Sci 118:2975–2986. doi:10.1242/jcs.02432 PubMedGoogle Scholar
  147. 147.
    Balsinde J, Balboa MA, Insel PA et al (1997) Differential regulation of phospholipase D and phospholipase A2 by protein kinase C in P388D1 macrophages. Biochem J 321:805–809PubMedGoogle Scholar
  148. 148.
    De Valck D, Beyaert R, Van Roy F et al (1993) Tumor necrosis factor cytotoxicity is associated with phospholipase D activation. Eur J Biochem 212:491–497. doi:10.1111/j.1432-1033.1993.tb17686.x PubMedGoogle Scholar
  149. 149.
    Meats JE, Steele L, Bowen JG (1993) Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions 39:C14–C16. doi:10.1007/BF01972706 PubMedGoogle Scholar
  150. 150.
    Sapirstein A, Saito H, Texel SJ et al (2005) Cytosolic phospholipase A2 alpha regulates induction of brain cyclooxygenase-2 in a mouse model of inflammation. Am J Physiol 288:R1774–R1782Google Scholar
  151. 151.
    Aloisi F, De Simone R, Columba-Cabezas S et al (1999) Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res 56:571–580. doi:10.1002/(SICI)1097-4547(19990615)56:6<571::AID-JNR3>3.0.CO;2-PPubMedGoogle Scholar
  152. 152.
    Bernardo A, Levi G, Minghetti L (2000) Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci 12:2215–2223. doi:10.1046/j.1460-9568.2000.00110.x PubMedGoogle Scholar
  153. 153.
    Ikeda-Matsuo Y, Ikegaya Y, Matsuki N et al (2005) Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J Neurochem 94:1546–1558. doi:10.1111/j.1471-4159.2005.03302.x PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Mikhail Y. Golovko
    • 1
  • Gwendolyn Barceló-Coblijn
    • 1
    • 2
  • Paula I. Castagnet
    • 1
    • 3
  • Susan Austin
    • 1
  • Colin K. Combs
    • 1
  • Eric J. Murphy
    • 1
    • 4
  1. 1.Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksUSA
  2. 2.Department of BiologyUniversity of the Balearic IslandsPalmaSpain
  3. 3.Department of BiologyAve Maria UniversityAve MariaUSA
  4. 4.Department of ChemistryUniversity of North DakotaGrand ForksUSA

Personalised recommendations