Molecular and Cellular Biochemistry

, Volume 326, Issue 1–2, pp 67–77 | Cite as

Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure

  • David H. Dyer
  • Irina Vyazunova
  • Jeffery M. Lorch
  • Katrina T. Forest
  • Que Lan
Article

Abstract

The sterol carrier protein-2 like 3 gene (AeSCP-2L3), a new member of the SCP-2 protein family, is identified from the yellow fever mosquito, Aedes aegypti. The predicted molecular weight of AeSCP-2L3 is 13.4 kDa with a calculated pI of 4.98. AeSCP-2L3 transcription occurs in the larval feeding stages and the mRNA levels decrease in pupae and adults. The highest levels of AeSCP-2L3 gene expression are found in the body wall, and possibly originated in the fat body. This is the first report of a mosquito SCP-2-like protein with prominent expression in tissue other than the midgut. The X-ray protein crystal structure of AeSCP-2L3 reveals a bound C16 fatty acid whose acyl tail penetrates deeply into a hydrophobic cavity. Interestingly, the ligand-binding cavity is slightly larger than previously described for AeSCP-2 (Dyer et al. J Biol Chem 278:39085–39091, 2003) and AeSCP-2L2 (Dyer et al. J Lipid Res M700460–JLR200, 2007). There are also an additional 10 amino acids in SCP-2L3 that are not present in other characterized mosquito SCP-2s forming an extended loop between β3 and β4. Otherwise, the protein backbone is exceedingly similar to other SCP-2 and SCP-2-like proteins. In contrast to this observed high structural homology of members in the mosquito SCP2 family, the amino acid sequence identity between the members is less than 30%. The results from structural analysis imply that there have been evolutionary constraints that favor the SCP-2 Cα backbone fold while the specificity of ligand binding can be altered.

Keywords

Sterol carrier Mosquito Cholesterol Fatty acid 

Notes

Acknowledgments

This work was supported by the University of Wisconsin-Madison College of Agriculture and Life Sciences’ USDA-CSREES Hatch project WIS04963, by grant W9113 M-05-1-0006 from the Deployed War Fighter Protection Research Program (DWFP) administered by the US Armed Forces Pest Management Board (AFPMB), by the National Institute of Health research grant #5R01AI067422 to Q.L. and by the Alex and Lillian Feir Graduate Fellowship to I.V.

Supplementary material

11010_2008_7_MOESM1_ESM.pdf (32 kb)
Supplementary material 1 (PDF 32 kb)

References

  1. 1.
    Gallegos AM et al (2001) Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 40:498–563. doi: 10.1016/S0163-7827(01)00015-7 PubMedCrossRefGoogle Scholar
  2. 2.
    Krebs KC, Lan Q (2003) Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 12:51–60. doi: 10.1046/j.1365-2583.2003.00386.x PubMedCrossRefGoogle Scholar
  3. 3.
    Lan Q, Massey RJ (2004) Subcellular localization of the mosquito sterol carrier protein-2 and sterol carrier protein-x. J Lipid Res 45:1468–1474. doi: 10.1194/jlr.M400003-JLR200 PubMedCrossRefGoogle Scholar
  4. 4.
    Lan Q, Wessely V (2004) Expression of a sterol carrier protein-x gene in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 13:519–529. doi: 10.1111/j.0962-1075.2004.00510.x PubMedCrossRefGoogle Scholar
  5. 5.
    Vyazunova I et al (2007) Identification of two sterol carrier protein-2 like genes in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 16:305–314. doi: 10.1111/j.1365-2583.2007.00729.x PubMedCrossRefGoogle Scholar
  6. 6.
    Dyer DH et al (2007) 3-D structure/function analysis of sterol carrier protein-2-like 2 reveals differences among SCP-2 family members. J Lipid Res M700460–JLR200Google Scholar
  7. 7.
    Dyer DH et al (2003) The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35-A resolution. J Biol Chem 278:39085–39091. doi: 10.1074/jbc.M306214200 PubMedCrossRefGoogle Scholar
  8. 8.
    Riddiford LM, Curtis AT, Kiguch K (1979) Culture of the epidermis of the tobacco hornworm, Manduca sexta. Tissue Cult Assoc Man 5:975–985. doi: 10.1007/BF00919715 CrossRefGoogle Scholar
  9. 9.
    Ausubel FM et al (1999) Current protocols in molecular biology. Greene Publishing Associates, Inc. and Wiley, New YorkGoogle Scholar
  10. 10.
    McPherson A (1982) Preparation and analysis of protein crystals. Krieger, MalabarGoogle Scholar
  11. 11.
    Page R, Stevens RC (2004) Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods Macromol Cryst 34:373–389Google Scholar
  12. 12.
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  13. 13.
    Storoni LC, McCoy AJ, Read RJ (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr 60:432–438Google Scholar
  14. 14.
    McCoy AJ et al (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61:458–464. doi: 10.1107/S0907444905001617 PubMedCrossRefGoogle Scholar
  15. 15.
    Zwart PH, Langer GG, Lamzin VS (2004) Modelling bound ligands in protein crystal structures. Acta Crystallogr D Biol Crystallogr 60:2230–2239. doi: 10.1107/S0907444904012995 PubMedCrossRefGoogle Scholar
  16. 16.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr 53:240–255Google Scholar
  17. 17.
    Leszczynski M (1993) The lattice constant of a nonperfect crystal measured by X-ray diffraction. J Appl Cryst 26:280–283. doi: 10.1107/S0021889892011282 CrossRefGoogle Scholar
  18. 18.
    Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39:417–423. doi: 10.1016/j.ympev.2006.01.006 PubMedCrossRefGoogle Scholar
  19. 19.
    Blitzer EJ, Vyazunova I, Lan Q (2005) Functional analysis of AeSCP-2 using gene expression knockdown in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 14:301–307. doi: 10.1111/j.1365-2583.2005.00560.x PubMedCrossRefGoogle Scholar
  20. 20.
    Murzin AG et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedGoogle Scholar
  21. 21.
    Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713. doi: 10.1126/science.6879170 PubMedCrossRefGoogle Scholar
  22. 22.
    Juers DH, Matthews BW (2005) Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization. Q Rev Biophys 37:105–119. doi: 10.1017/S0033583504004007 CrossRefGoogle Scholar
  23. 23.
    Canavoso LE et al (2004) Lipid transfer particle mediates the delivery of diacylglycerol from lipophorin to fat body in larval Manduca sexta. J Lipid Res 45:456–465. doi: 10.1194/jlr.M300242-JLR200 PubMedCrossRefGoogle Scholar
  24. 24.
    Yun HK, Jouni ZE, Wells MA (2002) Characterization of cholesterol transport from midgut to fat body in Manduca sexta larvae. Insect Biochem Mol Biol 32:1151–1158. doi: 10.1016/S0965-1748(02)00051-6 PubMedCrossRefGoogle Scholar
  25. 25.
    Krissinel EB et al (2004) The new CCP4 coordinate library as a toolkit for the design of coordinate-related applications in protein crystallography. Acta Crystallogr D Biol Crystallogr 60:2250–2255. doi: 10.1107/S0907444904027167 PubMedCrossRefGoogle Scholar
  26. 26.
    Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D60:2256–2268Google Scholar
  27. 27.
    Viitanen L et al (2006) Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS J 273:5641–5655. doi: 10.1111/j.1742-4658.2006.05553.x PubMedCrossRefGoogle Scholar
  28. 28.
    Thompson JR, Banaszak LJ (2002) Lipid–protein Interactions in lipovitellin. Biochemistry 41:9398–9409. doi: 10.1021/bi025674w PubMedCrossRefGoogle Scholar
  29. 29.
    Haapalainen AM et al (2001) Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 Å resolution. J Mol Biol 313:1127–1138. doi: 10.1006/jmbi.2001.5084 PubMedCrossRefGoogle Scholar
  30. 30.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • David H. Dyer
    • 1
    • 2
  • Irina Vyazunova
    • 2
  • Jeffery M. Lorch
    • 2
  • Katrina T. Forest
    • 1
  • Que Lan
    • 2
  1. 1.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of EntomologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations