Molecular and Cellular Biochemistry

, Volume 326, Issue 1–2, pp 23–28

Acyl-CoA synthetases: fatty acid uptake and metabolic channeling

  • Margarete Digel
  • Robert Ehehalt
  • Wolfgang Stremmel
  • Joachim Füllekrug


The molecular mechanism of fatty acid uptake and utilization is of high medical relevance for the treatment of obesity, diabetes, and cardiovascular disease. Neuronal processes, hormones, and transcription factors are master regulators of these essential processes while their fine-tuning is achieved by modulating the activity and amount of enzymes. Proteins involved in fatty acid uptake and metabolism are important pharmaceutical targets. Only basic research on these molecules will lead to new strategies for therapy. Conceptionally, the intracellular utilization of long chain fatty acids may be subdivided into three steps: uptake across the plasma membrane, activation by esterification with coenzyme A, and subsequent metabolism. Long chain acyl-CoA synthetases (ACSLs) activate fatty acids for intracellular metabolism but are also involved in the regulation of uptake. The predominant pathways for fatty acids are their storage, membrane biosynthesis, and conversion to energy. How activated fatty acids are channeled toward one particular metabolic pathway is not well understood on the molecular level. We have previously shown that ACSLs localized to either the endoplasmic reticulum or to mitochondria can regulate the extent of fatty acid uptake. Multiple different long chain ACSLs are expressed simultaneously in the same cell type but differ in their subcellular localization. The hypothesis we put forward here implies that the spatial organization of ACSL activity is a key factor in channeling fatty acids toward a particular metabolic fate.


Acyl-CoA synthetase Fatty acid uptake Subcellular localization 


  1. 1.
    Bonen A, Chabowski A, Luiken JJ et al (2007) Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 22:15–29Google Scholar
  2. 2.
    Kampf JP, Kleinfeld AM (2007) Is membrane transport of FFA mediated by lipid, protein, or both? An unknown protein mediates free fatty acid transport across the adipocyte plasma membrane. Physiology (Bethesda) 22:7–14. doi:10.1152/physiol.00011.2006 Google Scholar
  3. 3.
    Hamilton JA, Guo W, Kamp F (2002) Mechanism of cellular uptake of long-chain fatty acids: do we need cellular proteins? Mol Cell Biochem 239:17–23. doi:10.1023/A:1020542220599 PubMedCrossRefGoogle Scholar
  4. 4.
    Hamilton J, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269. doi:10.2337/diabetes.48.12.2255 PubMedCrossRefGoogle Scholar
  5. 5.
    Bonen A, Luiken JJ, Glatz JF (2002) Regulation of fatty acid transport and membrane transporters in health and disease. Mol Cell Biochem 239:181–192. doi:10.1023/A:1020511125085 PubMedCrossRefGoogle Scholar
  6. 6.
    Hajri T, Abumrad NA (2002) Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu Rev Nutr 22:383–415. doi:10.1146/annurev.nutr.22.020402.130846 PubMedCrossRefGoogle Scholar
  7. 7.
    Stahl A, Gimeno RE, Tartaglia LA et al (2001) Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12:266–273. doi:10.1016/S1043-2760(01)00427-1 PubMedCrossRefGoogle Scholar
  8. 8.
    Stremmel W, Pohl L, Ring A et al (2001) A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36:98198–98199. doi:10.1007/s11745-001-0809-2 CrossRefGoogle Scholar
  9. 9.
    Hirsch D, Stahl A, Lodish HF (1998) A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95:8625–8629. doi:10.1073/pnas.95.15.8625 PubMedCrossRefGoogle Scholar
  10. 10.
    Schaffer JE, Lodish HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–436. doi:10.1016/0092-8674(94)90252-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Uchiyama A, Aoyama T, Kamijo K et al (1996) Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem 271:30360–30365. doi:10.1074/jbc.271.48.30360 PubMedCrossRefGoogle Scholar
  12. 12.
    Hall AM, Smith AJ, Bernlohr DA (2003) Characterization of the acyl-CoA synthetase activity of purified murine fatty acid transport protein 1. J Biol Chem 278:43008–43013. doi:10.1074/jbc.M306575200 PubMedCrossRefGoogle Scholar
  13. 13.
    Hall AM, Wiczer BM, Herrmann T et al (2005) Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 280:11948–11954. doi:10.1074/jbc.M412629200 PubMedCrossRefGoogle Scholar
  14. 14.
    Black PN, DiRusso CC (2003) Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev 67:4544–4572. doi:10.1128/MMBR.67.3.454-472.2003 table of contentsCrossRefGoogle Scholar
  15. 15.
    Klein K, Steinberg R, Fiethen B et al (1971) Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem 19:442–450. doi:10.1111/j.1432-1033.1971.tb01334.x Google Scholar
  16. 16.
    Kalant D, Cianflone K (2004) Regulation of fatty acid transport. Curr Opin Lipidol 15:309–314. doi:10.1097/00041433-200406000-00011 PubMedCrossRefGoogle Scholar
  17. 17.
    Pei Z, Fraisl P, Berger J (2004) Mouse very long-chain acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 279:54454–54462Google Scholar
  18. 18.
    Watkins PA (1997) Fatty acid activation. Prog Lipid Res 36:55–83. doi:10.1016/S0163-7827(97)00004-0 PubMedCrossRefGoogle Scholar
  19. 19.
    Mashek DG, Li LO, Coleman RA (2007) Long-chain acyl-CoA synthetases and fatty acid channeling. Future Lipidol 2:465–476. doi:10.2217/17460875.2.4.465 CrossRefGoogle Scholar
  20. 20.
    Watkins PA (2007) Very long-chain acyl-CoA synthetases. J Biol Chem 283:1773–1777. doi:10.1074/jbc.R700037200 PubMedCrossRefGoogle Scholar
  21. 21.
    Watkins PA, Maiguel D, Jia Z et al (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48:2736–2750. doi:10.1194/jlr.M700378-JLR200 PubMedCrossRefGoogle Scholar
  22. 22.
    Steinberg SJ, Morgenthaler J, Heinzer AK et al (2000) Very long-chain acyl-CoA synthetases—human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem 275:35162–35169. doi:10.1074/jbc.M006403200 PubMedCrossRefGoogle Scholar
  23. 23.
    Milger K, Herrmann T, Becker C et al (2006) Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci 119:4678–4688. doi:10.1242/jcs.03280 PubMedCrossRefGoogle Scholar
  24. 24.
    Heimli H, Hollung K, Drevon CA (2003) Eicosapentaenoic acid-induced apoptosis depends on acyl CoA-synthetase. Lipids 38:263–268. doi:10.1007/s11745-003-1059-z PubMedCrossRefGoogle Scholar
  25. 25.
    Mashek DG, McKenzie MA, Van Horn CG et al (2006) Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J Biol Chem 281:945–950. doi:10.1074/jbc.M507646200 PubMedCrossRefGoogle Scholar
  26. 26.
    Haunerland NH, Spener F (2004) Fatty acid-binding proteins—insights from genetic manipulations. Prog Lipid Res 43:328–349. doi:10.1016/j.plipres.2004.05.001 PubMedCrossRefGoogle Scholar
  27. 27.
    Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323(Pt 1):1–12PubMedGoogle Scholar
  28. 28.
    Ruan H, Pownall HJ (2001) Overexpression of 1-acyl-glycerol-3-phosphate acyltransferase-{alpha} enhances lipid storage in cellular models of adipose tissue and skeletal muscle. Diabetes 50:233–240. doi:10.2337/diabetes.50.2.233 PubMedCrossRefGoogle Scholar
  29. 29.
    Yu YH, Ginsberg HN (2004) The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism. Ann Med 36:252–261. doi:10.1080/07853890410028429 PubMedCrossRefGoogle Scholar
  30. 30.
    Mashek DG, Coleman RA (2006) Cellular fatty acid uptake: the contribution of metabolism. Curr Opin Lipidol 17:274–278. doi:10.1097/01.mol.0000226119.20307.2b PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl A, Hirsch DJ, Gimeno RE et al (1999) Identification of the major intestinal fatty acid transport protein. Mol Cell 4:299–308. doi:10.1016/S1097-2765(00)80332-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Gargiulo CE, Stuhlsatz-Krouper SM, Schaffer JE (1999) Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. J Lipid Res 40:881–892PubMedGoogle Scholar
  33. 33.
    Doege H, Baillie RA, Ortegon AM et al (2006) Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245–1258. doi:10.1053/j.gastro.2006.02.006 PubMedCrossRefGoogle Scholar
  34. 34.
    Steinberg SJ, Wang SJ, Kim DG et al (1999) Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun 257:615–621. doi:10.1006/bbrc.1999.0510 PubMedCrossRefGoogle Scholar
  35. 35.
    Steinberg SJ, Wang SJ, McGuinness MC et al (1999) Human liver-specific very-long-chain acyl-coenzyme A synthetase: cDNA cloning and characterization of a second enzymatically active protein. Mol Genet Metab 68:32–42. doi:10.1006/mgme.1999.2883 PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Martinez C, Marotta M, Moore-Carrasco R et al (2005) Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am J Physiol Cell Physiol 288:C1264–C1272. doi:10.1152/ajpcell.00271.2004 PubMedCrossRefGoogle Scholar
  37. 37.
    Lobo S, Wiczer BM, Smith AJ et al (2007) Fatty acid metabolism in adipocytes: functional analysis of fatty acid transport proteins 1 and 4. J Lipid Res 48:609–620. doi:10.1194/jlr.M600441-JLR200 PubMedCrossRefGoogle Scholar
  38. 38.
    Jia Z, Moulson CL, Pei Z et al (2007) Fatty acid transport protein 4 is the principal very long chain fatty acyl-CoA synthetase in skin fibroblasts. J Biol Chem 282:20573–20583. doi:10.1074/jbc.M700568200 PubMedCrossRefGoogle Scholar
  39. 39.
    Heimerl S, Moehle C, Zahn A et al (2006) Alterations in intestinal fatty acid metabolism in inflammatory bowel disease. Biochim Biophys Acta 1762:341–350PubMedGoogle Scholar
  40. 40.
    Van Horn CG, Caviglia JM, Li LO et al (2005) Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1642. doi:10.1021/bi047721l PubMedCrossRefGoogle Scholar
  41. 41.
    Tong F, Black PN, Coleman RA et al (2006) Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases. Arch Biochem Biophys 447:46–52. doi:10.1016/ PubMedCrossRefGoogle Scholar
  42. 42.
    Lewin TM, Kim J-H, Granger DA et al (2001) Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem 276:24674–24679. doi:10.1074/jbc.M102036200 PubMedCrossRefGoogle Scholar
  43. 43.
    Li LO, Mashek DG, An J et al (2006) Overexpression of rat long chain acyl-CoA synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem 281:37246–37255. doi:10.1074/jbc.M604427200 PubMedCrossRefGoogle Scholar
  44. 44.
    Coleman RA, Lewin TM, Van Horn CG et al (2002) Do long-chain acyl-coa synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 132:2123–2126PubMedGoogle Scholar
  45. 45.
    Brasaemle DL, Dolios G, Shapiro L et al (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically-stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842Google Scholar
  46. 46.
    Hatch GM, Smith AJ, Xu FY et al (2002) FATP1 channels exogenous FA into 1, 2, 3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J Lipid Res 43:1380–1389. doi:10.1194/jlr.M200130-JLR200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Margarete Digel
    • 1
  • Robert Ehehalt
    • 1
  • Wolfgang Stremmel
    • 1
  • Joachim Füllekrug
    • 1
    • 2
  1. 1.Department of GastroenterologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Molecular Cell Biology, Internal Medicine IVUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations