Molecular and Cellular Biochemistry

, Volume 310, Issue 1–2, pp 227–234 | Cite as

External Qi of Yan Xin Qigong induces G2/M arrest and apoptosis of androgen-independent prostate cancer cells by inhibiting Akt and NF-κB pathways

  • Xin Yan
  • Hua Shen
  • Hongjian Jiang
  • Chengsheng Zhang
  • Dan Hu
  • Jun Wang
  • Xinqi Wu


Long-term clinical observations and ongoing studies have shown antitumor effects of external Qi of Yan Xin Qigong (YXQG-EQ) that originated from traditional Chinese medicine (TCM). In order to understand the molecular mechanisms underlying the antitumor effects of YXQG-EQ, we investigate the effects of YXQG-EQ on growth and apoptosis in androgen-independent prostate cancer PC3 cells. We found that exposure to YXQG-EQ led to G2/M arrest associated with reduced cyclin B1 expression and apoptosis in PC3 cells. YXQG-EQ treatment inhibited constitutive and epidermal growth factor-induced Akt phosphorylation, basal and TNF-α-induced NF-κB activation, and downregulated anti-apoptotic Bcl-2 and Bcl-xL expression. In contrast, exposure to YXQG-EQ increased phosphorylation of Akt and Erk1/2 in human umbilical vein endothelial cells (HUVEC), and had no cytotoxic effect on either HUVEC or peripheral blood mononuclear cells (PBMC). These results indicate that YXQG-EQ has profound effects on growth and apoptosis of prostate cancer cells by targeting survival pathways including the Akt and NF-κB pathways.


Akt NF-κB Prostate cancer G2/M arrest Apoptosis External Qi of Yan Xin Qigong 



This work was supported in part by the Yan Xin Foundation.


  1. 1.
    Jemal A, Tiwari RC, Muarray T, Ghafoor A, Samueles A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics. CA Cancer J Clin 54:8–29PubMedCrossRefGoogle Scholar
  2. 2.
    Isaacs JT (2000) Apoptosis: translating theory to therapy for prostate cancer. J Natl Cancer Inst (Bethesda) 92:1367–1369CrossRefGoogle Scholar
  3. 3.
    Garnick MB (1997) Hormonal therapy in the management of prostate cancer: from Huggins to the present. Urology 49(3A Suppl):5–15PubMedCrossRefGoogle Scholar
  4. 4.
    Yan X, Shen H, Zaharia M, Wang J, Wolf D, Li F, Cao W (2004) Involvement of phosphatidylinositol 3-kinase and insulin-like growth factor-I in YXLST-mediated neuroprotection. Brain Res 1006:198–206PubMedCrossRefGoogle Scholar
  5. 5.
    Yan X, Shen H, Jiang H, Zhang C, Hu D, Wang J, Wu X (2006) External Qi of Yan Xin Qigong differentially regulates the Akt and extracellular signal-regulated kinase pathways and is cytotoxic to cancer cells but not to normal cells. Int J Biochem Cell Biol 38:2102–2113PubMedCrossRefGoogle Scholar
  6. 6.
    Ming Z (1988) The new frontiers of modern sciences: an introduction to Yan Xin Qigong. Xinhua Press, BeijingGoogle Scholar
  7. 7.
    Fong YH (1997) Yan Xin Qigong informative product: Qi nutrition powder. In: International Yan Xin Qigong Association (eds) Yan Xin Qigong Collectanea, vol 6. Les Editions LOTUS Publishers of Canada, Quebec, p 299Google Scholar
  8. 8.
    Wang R, Zhu R (1997) Yan Xin Qigong nutrition powder: report of nine cases. In: International Yan Xin Qigong Association (eds) Yan Xin Qigong Collectanea, vol 1. Les Editions LOTUS Publishers of Canada, Quebec, p 266Google Scholar
  9. 9.
    Zhang ZW, Zhao JX, Zhang XR (1999) Yan Xin Qigong nutrition powder: clinical report. In: International Yan Xin Qigong Association (eds) Yan Xin Qigong Collectanea, vol 1. Les Editions LOTUS Publishers of Canada, Quebec, p 319Google Scholar
  10. 10.
    Lu Z (1997) Scientific Qigong exploration: the wonders and mysteries of Qi. Amber Leaf Press, Malvern, PennsylvaniaGoogle Scholar
  11. 11.
    Yan X, Lin H, Li H, Traynor-Kaplan A, Xia Z, Lu F, Fang Y, Dao M (1999) Structural and property changes in certain materials influenced by the external Qi of Qigong. Mater Res Innov 2:349–359CrossRefGoogle Scholar
  12. 12.
    Yan X, Lu F, Jiang H, Wu X, Cao W, Xia Z, Dao M, Lin H (2002) Certain manifestation and effects of external Qi of Yan Xin life science and technology. J Sci Explor 16:381–411Google Scholar
  13. 13.
    Li S, Sun M, Dai Z, Zhang P, Meng G, Liu Z, Ma Q, Zhu Q, Wang Q, Zhang L, Shan L, Sun Y, Hu Y, Chen Y, Pang Y, Wang G, Hao X, Lu A, Fan X, Yan X (1990) Experimental studies on the feasibility of improving industrial strains with external Qi treatment. Nat J 13:791–801Google Scholar
  14. 14.
    Yan X, Zheng C, Zou G, Lu Z (1988) Observations of the effects of external Qi on the ultraviolet absorption of nucleic acids. Nat J 11:647–649Google Scholar
  15. 15.
    Yan X, Xia ZQ, Shen H, Traynor-Kaplan A (2002) External Qi of Yan Xin life science and technology can revive or suppress enzyme activity of phosphatidylinositol 3-kinase. Bull Sci Tech Soc 22:403–406CrossRefGoogle Scholar
  16. 16.
    Yan X, Fong YH, Wolf G, Wolf D, Cao W (2001) Protective effect of XY99–5038 on hydrogen peroxide induced cell death in cultured retinal neurons. Life Sci 69:289–299CrossRefGoogle Scholar
  17. 17.
    Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R, Kreisberg JI (2002) Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8:1168–1171PubMedGoogle Scholar
  18. 18.
    Murillo H, Huang H, Schmidt LJ, Smith DI, Tindall DJ (2002) Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology 142:114795–114805Google Scholar
  19. 19.
    Gasparian AV, Yao YJ, Kowalczyk D, Lyakh LA, Karseladze A, Slaga TJ, Budunova IV (2002) The role of IKK in constitutive activation of NF-κB transcription factor in prostate carcinoma cells. J Cell Sci 115:141–151PubMedGoogle Scholar
  20. 20.
    Catz SD, Johnson JL (2003) Bcl-2 in prostate cancer: a minireview. Apoptosis 8:29–37PubMedCrossRefGoogle Scholar
  21. 21.
    Raj GV, Sekula JA, Guo R, Madden JF, Daaka Y (2004) Lysophosphatidic acid promotes survival of androgen-insensitive prostate cancer PC3 cells via activation of NF-κB. Prostate 61:105–113PubMedCrossRefGoogle Scholar
  22. 22.
    Lindholm PF, Bub J, Kaul S, Shidham VB, Kajdacsy-Balla A (2000) The role of constitutive NF-κB activity in PC-3 human prostate cancer cell invasive behavior. Clin Exp Metastasis 18:471–479PubMedCrossRefGoogle Scholar
  23. 23.
    Erlich S, Tal-Or P, Liebling R, Blum R, Karunagaran D, Kloog Y, Pinkase-Kramarski R (2006) Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. Biochem Pharmcol 72:427–436CrossRefGoogle Scholar
  24. 24.
    Li Y, Sarkar FH (2002) Inhibition of nuclear factor κB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8:2369–2377PubMedGoogle Scholar
  25. 25.
    Sinha S, Pal BC, Jagadeesh S, Banerjee PP, Bandyopadhaya A, Bhattacharya S (2006) Mahanine inhibits growth and induces apoptosis in prostate cancer cells through the deactivation of Akt and activation of caspases. Prostate 66:1257–1265PubMedCrossRefGoogle Scholar
  26. 26.
    Yemelyanov A, Gasparian A, Lindholm P, Dang L, Pierce JW, Kisseljov F, Karseladze A, Budunova I (2006) Effects of IKK inhibitor PS1145 on NF-κB function, proliferation, apoptosis and invasion activity in prostate carcinoma cells. Oncogene 25:387–398PubMedGoogle Scholar
  27. 27.
    Bonaccorsi L, Marchiani S, Muratori M, Forti G, Baldi E (2004) Gefitinib (‘IRESSA’, ZD1839) inhibits EGF-induced invasion in prostate cancer cells by suppressing PI3 K/AKT activation. J Cancer Res Clin Oncol 130:604–614PubMedCrossRefGoogle Scholar
  28. 28.
    Lee JT, Steelman LS, McCubrey JA (2004) Phosphatidylinosital 3-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res 64:8397–8404PubMedCrossRefGoogle Scholar
  29. 29.
    Arlt A, Gehrz A, Muerkoster S, Vorndamm J, Kruse ML, Folsch UR, Schafer H (2003) Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang Y, Banerjee S, Wang ZW, Marciniak DJ, Majumdar AP, Sarkar FH (2005) Epidermal growth factor receptor-related protein inhibits cell growth and induces apoptosis of BxPC3 pancreatic cancer cells. Cancer Res 65:3877–3882PubMedCrossRefGoogle Scholar
  31. 31.
    Kim HG, Kassis J, Souto JC, Turner T, Wells A (1999) EGF receptor signaling in prostate morphogenesis and tumorigenesis. Histol Histopathol 14:1175–1182PubMedGoogle Scholar
  32. 32.
    Mimeault M, Pommery N, Henichart JP (2003) New advances on prostate carcinogenesis and therapies: involvement of EGF-EGFR transduction system. Growth Factors 21:1–14PubMedCrossRefGoogle Scholar
  33. 33.
    Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395PubMedCrossRefGoogle Scholar
  34. 34.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1999) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321CrossRefGoogle Scholar
  35. 35.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefGoogle Scholar
  36. 36.
    Romashkova JA, Makarov SS (1999) NF-κB is a target of Akt in anti-apoptotic PDGF signaling. Nature 401:86–90PubMedCrossRefGoogle Scholar
  37. 37.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-κB activation by tumor necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85PubMedCrossRefGoogle Scholar
  38. 38.
    Krystal GW, Sulanke G, Litz J (2002) Inhibition of phosphotidylinosital 3-kinase-Akt signaling blocks growth, promotes apoptosis, and enhances sensitivity of small cell lung cancer cells to chemotherapy. Mol Cancer Ther 1:913–922PubMedGoogle Scholar
  39. 39.
    Saito Y, Swanson X, Mhashikar AM, Oida Y, Branch CD, Chada S, Zumstein L, Ramesh (2003) Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther 10:1961–1969PubMedCrossRefGoogle Scholar
  40. 40.
    Liu X, Shi Y, Giranda VL, Luo Y (2006) Inhibition of the phosphotidylinositol 3-kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis. Mol Cancer Ther 5:494–501PubMedCrossRefGoogle Scholar
  41. 41.
    Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG (2006) Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6:107–117PubMedCrossRefGoogle Scholar
  42. 42.
    Yao J, Duan L, Fan M, Wu X (2006) NF-κB signaling pathway is involved in growth inhibition, G2/M arrest and apoptosis induced by Trichostatin A in human tongue carcinoma cells. Pharmacol Res 54:406–413PubMedCrossRefGoogle Scholar
  43. 43.
    Saito Y, Swanson X, Mhashilkar AM, Oida Y, Schrock R, Branch CD, Chada S, Zumstein L, Ramesh R (2003) Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther 10:1961–1969PubMedCrossRefGoogle Scholar
  44. 44.
    Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K, Kuppusamy P (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282:28609–28618PubMedCrossRefGoogle Scholar
  45. 45.
    Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteosome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354PubMedCrossRefGoogle Scholar
  46. 46.
    Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421PubMedCrossRefGoogle Scholar
  47. 47.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Ann Rev Cell Dev Biol 15:269–290CrossRefGoogle Scholar
  48. 48.
    Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233PubMedCrossRefGoogle Scholar
  49. 49.
    Hu Y, Benedict MA, Wu D, Inohara N, Nunez G (1998) Bcl-xL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 95:4386–4391PubMedCrossRefGoogle Scholar
  50. 50.
    Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625PubMedCrossRefGoogle Scholar
  51. 51.
    Yan X, Zhao N, Yin C, Lu Z (1988) The effect of external Qi on liposome phase behavior. Nat J 11:572–576Google Scholar
  52. 52.
    Yang C-C, Lin H-P, Chen C-S, Yang Y-T, Tseng P-H, Rangnekar VM, Chen C-S. (2003) Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells. J Biol Chem 278:25872–25878PubMedCrossRefGoogle Scholar
  53. 53.
    Le Page C, Koumakpayi IH, Lessard L, Saad F, Mes-Masson AM (2005) Independent role of phosphoinositol-3-kinase (PI3K) and casein kinase II (CK-2) in EGFR and Her-2-mediated constitutive NF-κB activation in prostate cancer cells. Prostate 65:306–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Xin Yan
    • 1
    • 2
  • Hua Shen
    • 2
  • Hongjian Jiang
    • 3
  • Chengsheng Zhang
    • 4
  • Dan Hu
    • 5
  • Jun Wang
    • 2
  • Xinqi Wu
    • 3
  1. 1.Institute of Chongqing Traditional Chinese MedicineChongqingChina
  2. 2.New Medical Science Research InstituteNew YorkUSA
  3. 3.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  4. 4.McMaster UniversityHamiltonCanada
  5. 5.Dana-Farber Cancer InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations