Molecular and Cellular Biochemistry

, Volume 310, Issue 1–2, pp 49–55 | Cite as

Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro

  • Xiao-Fan Wang
  • Chen-Fang Dong
  • Jin Zhang
  • Yan-Zhen Wan
  • Feng Li
  • Yin-Xia Huang
  • Lu Han
  • Bing Shan
  • Chen Gao
  • Jun Han
  • Xiao-Ping Dong


Microtubule associated protein tau is considered to play roles in some types of human transmissible spongiform encephalopathies (TSE). In this study, the full-length and several truncated human tau proteins were expressed from E. coli and purified. Using GST pull down, co-immunoprecipitation assay and tau-coated ELISA, the molecular interaction between tau protein and PrP was confirmed in the context of the full-length human tau. The N terminus (amino acids 1–91) and tandem repeats region (amino acids 186–283) of tau protein were responsible for the interaction with PrP. The octapeptide repeats within PrP directly affected the binding activity of PrP with tau. GSS-related mutant PrP102L and fCJD- related mutants with two and seven extra octarepeats showed more active binding capacity with tau than wild-type PrP. The molecular interactions between PrP and tau protein highlight a potential role of tau in the biological function of PrP and the pathogenesis of TSE.


Prion protein tau protein Transmissible spongiform encephalopathies 



This work was supported by Chinese National Natural Science Foundation Grants 30571672 and 30500018, National Science and Technology Task Force Project (2006BAD06A13-2) and National Basic Research Program of China (973 Program) (2007CB310505).


  1. 1.
    Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230PubMedGoogle Scholar
  2. 2.
    Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862PubMedCrossRefGoogle Scholar
  3. 3.
    Cleveland DW, Hwo SY, Kirschner MW (1997) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247CrossRefGoogle Scholar
  4. 4.
    Cleveland DW, Hwo SY, Kirschner MW (1997) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225CrossRefGoogle Scholar
  5. 5.
    Schaffer B, Wiedau-Pazos M, Geschwind DH (2003) Gene structure and alternative splicing of glycogen synthase kinase 3 beta (GSK-3beta) in neural and non-neural tissues. Gene 302:73–81PubMedCrossRefGoogle Scholar
  6. 6.
    Wu JY, Kar A, Kuo D (2006) SRp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy. Mol Cell Biol 26:6739–6747PubMedCrossRefGoogle Scholar
  7. 7.
    Yamashita T, Tomiyama T, Li Q, Numata H et al (2005) Regulation of tau exon 10 splicing by a double stem-loop structure in mouse intron 10. FEBS Lett 579:241–244PubMedCrossRefGoogle Scholar
  8. 8.
    Hall G.F, Chu B, Lee G. et al (2000) Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J Cell Sci 113(Pt 8):1373–1387PubMedGoogle Scholar
  9. 9.
    Murayama S, Mori H, Ihara Y et al (1990) Immunocytochemical and ultrastructural studies of Pick’s disease. Ann Neurol 27:394–405PubMedCrossRefGoogle Scholar
  10. 10.
    Perry G, Stewart D, Friedman R, Manetto V et al (1987) Filaments of Pick’s bodies contain altered cytoskeletal elements. Am J Pathol 127:559–568PubMedGoogle Scholar
  11. 11.
    Probst A, Langui D, Lautenschlager C et al (1988) Progressive supranuclear palsy: extensive neuropil threads in addition to neurofibrillary tangles. Very similar antigenicity of subcortical neuronal pathology in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol. (Berl) 77:61–68CrossRefGoogle Scholar
  12. 12.
    Kunzi V, Glatzel M, Nakano MY et al (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22:7471–7477PubMedGoogle Scholar
  13. 13.
    Otto M, Wiltfang J, Cepek L et al (2002) Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 58:192–197PubMedGoogle Scholar
  14. 14.
    Ishizawa K, Komori T, Shimazu T et al (2002) Hyperphosphorylated tau deposition parallels prion protein burden in a case of Gerstmann–Straussler–Scheinker syndrome P102L mutation complicated with dementia. Acta Neuropathol 104:342–350PubMedGoogle Scholar
  15. 15.
    Kovacs GG., Budka H (2002) Aging, the brain and human prion disease. Exp Gerontol 37:603–605PubMedCrossRefGoogle Scholar
  16. 16.
    Borchelt DR, Koliatsos VE, Guarnieri M et al (1994) Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269:14711–14714PubMedGoogle Scholar
  17. 17.
    Spittaels K, Van den Haute C, Van Dorpe J et al (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165PubMedGoogle Scholar
  18. 18.
    Han J, Zhang J, Yao HL et al (2006) Study on interaction between microtubule associated protein tau and prion protein. Sci China 26:201–204Google Scholar
  19. 19.
    Han J, Wang XF, Yao HL et al (2005) Prion protein inhibited tau-mediated microtubule formation. Neurosci Bull 21:398–403Google Scholar
  20. 20.
    Gao JM, Wan YZ, Han J et al (2005) Influence of the numbers of octapeptide repeats within N-terminus of recombinant human PrP proteins on the protease resistance after interacting with metal ions and the binding ability with tau protein. Chinese J Virol 21(5): 376–383Google Scholar
  21. 21.
    Brown DR (2000) Altered toxicity of the prion protein peptide PrP106–126 carrying the Ala(117)−>Val mutation. Biochem J 346(Pt 3):785–791PubMedCrossRefGoogle Scholar
  22. 22.
    Berr C, Helbecque N, Sazdovitch V et al (2003) Polymorphism of the codon 129 of the prion protein (PrP) gene and neuropathology of cerebral ageing. Acta Neuropathol (Berl) 106:71–74Google Scholar
  23. 23.
    Mukrasch MD, Biernat J, von Bergen M et al (2005) Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986PubMedCrossRefGoogle Scholar
  24. 24.
    Gustke N, Trinczek B, Biernat J et al (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522PubMedCrossRefGoogle Scholar
  25. 25.
    Biernat J, Gustke N, Drewes G et al (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11:153–163PubMedCrossRefGoogle Scholar
  26. 26.
    Perez M, Lim F, Arrasate M et al (2000) The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J Neurochem 74:2583–2589PubMedCrossRefGoogle Scholar
  27. 27.
    Dustin P, Brion JP (1988) Pathology of the cytoskeleton. Ann Pathol 8:3–19PubMedGoogle Scholar
  28. 28.
    Dustin P, Brion JP, Flament-Durand J (1988) The cytoskeleton and its pathology. Bull Mem Acad R Med Belg 143:308–316PubMedGoogle Scholar
  29. 29.
    D’Andrea MR, Ilyin S, Plata-Salaman CR (2001) Abnormal patterns of microtubule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantia nigra brain tissues. Neurosci Lett 306:137–140PubMedCrossRefGoogle Scholar
  30. 30.
    Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17PubMedCrossRefGoogle Scholar
  31. 31.
    Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29PubMedCrossRefGoogle Scholar
  32. 32.
    Saha AR, Hill J, Utton MA et al (2004) Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 117:1017–1024PubMedCrossRefGoogle Scholar
  33. 33.
    Guiroy DC, Shankar SK, Gibbs CJ et al (1989) Neuronal degeneration and neurofilament accumulation in the trigeminal ganglia in Creutzfeldt-Jakob disease. Ann Neurol 25:102–106PubMedCrossRefGoogle Scholar
  34. 34.
    Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1:213–222PubMedCrossRefGoogle Scholar
  35. 35.
    Duchen LW, Poulter M, Harding AE (1993) Dementia associated with a 216 base pair insertion in the prion protein gene. Clinical and neuropathological features. Brain 116(Pt 3):555–567PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Xiao-Fan Wang
    • 1
  • Chen-Fang Dong
    • 1
  • Jin Zhang
    • 1
  • Yan-Zhen Wan
    • 1
  • Feng Li
    • 1
  • Yin-Xia Huang
    • 1
  • Lu Han
    • 1
  • Bing Shan
    • 1
  • Chen Gao
    • 1
  • Jun Han
    • 1
  • Xiao-Ping Dong
    • 1
  1. 1.State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingP.R. China

Personalised recommendations