Molecular and Cellular Biochemistry

, Volume 309, Issue 1–2, pp 125–132 | Cite as

α-Lipoic acid and ascorbate prevent LDL oxidation and oxidant stress in endothelial cells

Article

Abstract

Both α-lipoic acid (LA) and ascorbic acid (vitamin C) have been shown to improve endothelial dysfunction, a precursor of atherosclerosis. Since oxidant stress can cause endothelial dysfunction, we tested the interaction and efficacy of these antioxidants in preventing oxidant damage to lipids due to both intra- and extracellular oxidant stresses in EA.hy926 endothelial cells. LA spared intracellular ascorbate in culture and in response to an intracellular oxidant stress induced by the redox cycling agent menadione. Extracellular oxidant stress generated by incubating cells for 2 h in with 0.2 mg/ml LDL and 5 μM Cu2+ caused a time-dependent increase of the lipid peroxidation product malondialdehyde in both cells and LDL, preceded by rapid disappearance of` α-tocopherol in LDL. α-Lipoic acid at concentrations of 40–80 μM blunted these effects. Similarly, intracellular ascorbate concentrations of 1–2 mM also prevented Cu2+-induced lipid peroxidation in LDL and cells. Cu2+-dependent oxidation of LDL in the presence of ascorbate-loaded cells decreased intracellular ascorbate by 20%, but this decrease was not reversed by LA. Both LA and ascorbate protect endothelial cells and LDL from either intra- or extracellular oxidant stress, but that LA does not spare ascorbate in oxidatively stressed cells.

Keywords

Oxidant stress Lipoic acid Ascorbic acid Endothelial cells Low-density lipoprotein Cholesterol 

References

  1. 1.
    Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443PubMedCrossRefGoogle Scholar
  2. 2.
    Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  3. 3.
    Steinberg D, Parthasarathy S, Carew TE et al (1989) Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924PubMedCrossRefGoogle Scholar
  4. 4.
    Steinbrecher UP, Parthasarathy S, Leake DS et al (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887PubMedCrossRefGoogle Scholar
  5. 5.
    Matsugo S, Konishi T, Matsuo D et al (1996) Reevaluation of superoxide scavenging activity of dihydrolipoic acid and its analogues by chemiluminescent method using 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo-[1,2-a]pyrazine-3-one (MCLA) as a superoxide probe. Biochem Biophys Res Commun 227:216–220PubMedCrossRefGoogle Scholar
  6. 6.
    Packer L, Witt EH, Tritschler HJ (1995) α-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250PubMedCrossRefGoogle Scholar
  7. 7.
    Jocelyn PC (1967) The standard redox potential of cysteine-cystine from the thiol-disulfide exchange reaction with glutathione and lipoic acid. Eur J Biochem 2:327–331PubMedCrossRefGoogle Scholar
  8. 8.
    Han D, Handelman G, Marcocci L et al (1997) Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 6:321–338PubMedGoogle Scholar
  9. 9.
    Roy S, Packer L (1998) Redox regulation of cell functions by α-lipoate: biochemical and molecular aspects. Biofactors 8:17–21PubMedGoogle Scholar
  10. 10.
    Kagan VE, Serbinova EA, Forte T et al (1992) Recycling of vitamin E in human low density lipoproteins. J Lipid Res 33:385–397PubMedGoogle Scholar
  11. 11.
    Niki E, Noguchi N, Tsuchihashi H et al (1995) Interaction among vitamin C, vitamin E, and β-carotene. Am J Clin Nutr 62(Suppl):1322S–1326SPubMedGoogle Scholar
  12. 12.
    Martin A, Frei B (1997) Both intracellular and extracellular vitamin C inhibit atherogenic modification of LDL by human vascular endothelial cells. Arterioscler Thromb Vasc Biol 17:1583–1590PubMedGoogle Scholar
  13. 13.
    Negre-Salvayre A, Mabile L, Delchambre J et al (1995) α-Tocopherol, ascorbic acid, and rutin inhibit synergistically the copper-promoted LDL oxidation and the cytotoxicity of oxidized LDL to cultured endothelial cells. Biol Trace Elem Res 47:81–91PubMedCrossRefGoogle Scholar
  14. 14.
    Siow RC, Sato H, Leake DS et al (1999) Induction of antioxidant stress proteins in vascular endothelial and smooth muscle cells: protective action of vitamin C against atherogenic lipoproteins. Free Radic Res 31:309–318PubMedCrossRefGoogle Scholar
  15. 15.
    Totzke G, Metzner C, Ulrich-Merzenich G et al (2001) Effect of vitamin E and vitamin C on the DNA synthesis of human umbilical arterial endothelial cells. Eur J Nutr 40:121–126PubMedCrossRefGoogle Scholar
  16. 16.
    Packer L, Tritschler HJ (1996) Alpha-lipoic acid: the metabolic antioxidant. Free Radic Biol Med 20:625–626PubMedCrossRefGoogle Scholar
  17. 17.
    Jones W, Li X, Perriott LM et al (2002) Uptake, recycling, and antioxidant functions of α-lipoic acid in endothelial cells. Free Radic Biol Med 33:83–93PubMedCrossRefGoogle Scholar
  18. 18.
    Sattler W, Mohr D, Stocker R (1994) Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol 233:469–489PubMedCrossRefGoogle Scholar
  19. 19.
    Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737PubMedCrossRefGoogle Scholar
  20. 20.
    Bauer J, Margolis M, Schreiner C et al (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437–449PubMedCrossRefGoogle Scholar
  21. 21.
    Pech-Amsellem MA, Myara I, Pico I et al (1996) Oxidative modifications of low-density lipoproteins (LDL) by the human endothelial cell line EA.hy 926. Experientia 52:234–238PubMedCrossRefGoogle Scholar
  22. 22.
    Mendiratta S, Qu Z-C, May JM (1998) Erythrocyte ascorbate recycling: antioxidant effects in blood. Free Radic Biol Med 24:789–797PubMedCrossRefGoogle Scholar
  23. 23.
    Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226PubMedCrossRefGoogle Scholar
  24. 24.
    May JM, Qu Z-C, Mendiratta S (1998) Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289PubMedCrossRefGoogle Scholar
  25. 25.
    Tebbe B, Wu SL, Geilen CC et al (1997) l-ascorbic acid inhibits UVA-induced lipid peroxidation and secretion of IL-1α and IL-6 in cultured human keratinocytes in vitro. J Invest Dermatol 108:302–306PubMedCrossRefGoogle Scholar
  26. 26.
    May JM, Qu Z-C, Li X (2003) Ascorbic acid blunts oxidant stress due to menadione in endothelial cells. Arch Biochem Biophys 411:136–144PubMedCrossRefGoogle Scholar
  27. 27.
    Wells WW, Xu DP (1994) Dehydroascorbate reduction. J Bioenerg Biomembr 26:369–377PubMedCrossRefGoogle Scholar
  28. 28.
    Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349PubMedCrossRefGoogle Scholar
  29. 29.
    Thor H, Smith MT, Hartzell P et al (1982) The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem 257:12419–12425PubMedGoogle Scholar
  30. 30.
    Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377–6381PubMedCrossRefGoogle Scholar
  31. 31.
    Teichert J, Hermann R, Ruus P et al (2003) Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J Clin Pharmacol 43:1257–1267PubMedCrossRefGoogle Scholar
  32. 32.
    Retsky KL, Chen K, Zeind J et al (1999) Inhibition of copper-induced LDL oxidation by vitamin C is associated with decreased copper-binding to LDL and 2-oxo-histidine formation. Free Radic Biol Med 26:90–98PubMedCrossRefGoogle Scholar
  33. 33.
    May JM, Qu ZC (2005) Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis. Arch Biochem Biophys 434:178–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Department of MedicineVanderbilt University School of MedicineNashvilleUSA
  2. 2.University of MiamiMiamiUSA

Personalised recommendations