Molecular and Cellular Biochemistry

, Volume 307, Issue 1–2, pp 13–22

Fibrinogen induces endothelial cell permeability

  • Neetu Tyagi
  • Andrew M. Roberts
  • William L. Dean
  • Suresh C. Tyagi
  • David Lominadze
Article

Abstract

Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders.

Keywords

Albumin α5β1 integrin ERK F-actin Intercellular adhesion molecule-1 

References

  1. 1.
    Huxley V, Curry F (1995) Albumin modulation of capillary permeability: test of an adsorption mechanism. Am J Physiol 248(2 Pt 2):H264–H273Google Scholar
  2. 2.
    Huxley V, Curry F (1987) Effect of superfusate albumin on single capillary hydraulic conductivity. Am J Physiol Heart Circ Physiol 252(2 Pt 2):H395–H401Google Scholar
  3. 3.
    Mehta D, Malik A (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367PubMedCrossRefGoogle Scholar
  4. 4.
    Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB et al (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294(14):1799–1809PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R (1999) Mechanisms of disease – Atherosclerosis – An inflammatory disease. N Engl J Med 340(2):115–126PubMedCrossRefGoogle Scholar
  6. 6.
    Chae C, Lee R, Rifai N, Ridker P (2001) Blood pressure and inflammation in apparently healthy men. Hypertension 38(3):399–403PubMedGoogle Scholar
  7. 7.
    Ernst E, Resch K (1993) Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med 118:956–963PubMedGoogle Scholar
  8. 8.
    Letcher R, Chien S, Pickering T, Sealey J, Laragh J (1981) Direct relationship between blood pressure and blood viscosity in normal and hypertensive subject: role of fibrinogen and concentration. Am J Med 70:1195–1202PubMedCrossRefGoogle Scholar
  9. 9.
    Lominadze D, Joshua I, Schuschke D (1998) Increased erythrocyte aggregation in spontaneously hypertensive rats. Am J Hypertens 11:784–789PubMedCrossRefGoogle Scholar
  10. 10.
    Lee AJ, Lowe GD, Woodward M, Tunstall-Pedoe H (1993) Fibrinogen in relation to personal history of prevalent hypertension, diabetes, stroke, intermittent claudication, coronary heart disease, and family history: The Scottish Heart Health Study. Br Heart J 69(4):338–342PubMedCrossRefGoogle Scholar
  11. 11.
    D’Erasmo E, Acca M, Celi F, Medici F, Palmerini T, Pisani D (1993) Plasma fibrinogen and platelet count in stroke. J Med 24(2–3):185–191PubMedGoogle Scholar
  12. 12.
    Martinez J, Holburn R, Shapiro S, Erslev A (1974) Fibrinogen Philadelphia: a hereditary hypodysfibrinogenemia characterized by fibrinogen hypercatabolism. J Clin Invest 5:600–611Google Scholar
  13. 13.
    Humphries S (1995) Genetic regulation of fibrinogen. Eur Heart J 16:16–20PubMedGoogle Scholar
  14. 14.
    Vasse M, Paysant J, Soria J, Collet J, Vannier J, Soria C (1996) Regulation of fibrinogen biosynthesis by cytokines, consequences on the vascular risk. Haemostasis 26(Suppl 4):331–339PubMedGoogle Scholar
  15. 15.
    Nakamura A, Kohsaka T, Johns E (1996). Neuro-regulation of interleukin-6 gene expression in the spontaneously hypertensive rat kidney. J Hypert 14(7):839–845CrossRefGoogle Scholar
  16. 16.
    Tikkanen I, Uhlenius N, Tikkanen T, Miettinen A, Tornroth T, Fyhrquist F et al (1995) Increased renal expression of cytokines and growth factors induced by DOCA-NaCl treatment in Heymann nephritis. Nephrol Dial Transplant 10(12):2192–2198PubMedGoogle Scholar
  17. 17.
    Yudkin J, Kumari M, Humphries S, Mohamed-Ali V (1999) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148(2):209–214CrossRefGoogle Scholar
  18. 18.
    Dalekos G, Elisaf M, Papagalanis N, Tzallas C, Siamopoulos K (1996) Elevated interleukin-1 beta in the circulation of patients with essential hypertension before any drug therapy: a pilot study. Eur J Clin Invest 26(10):936–939PubMedGoogle Scholar
  19. 19.
    Kannan H, Tanaka Y, Kunitake T, Ueta Y, Hayashida Y, Yamashita H (2000) Activation of sympathetic outflow by recombinant human interleukin-1 beta in conscious rats. Am J Physiol 270(2 Pt.2):R479–R485Google Scholar
  20. 20.
    Gaffney P (2001) Fibrin degradation products: a review of structures found in vitro and in vivo. Ann N Y Acad Sci 936(1):594–610PubMedCrossRefGoogle Scholar
  21. 21.
    Ge M, Tang G, Ryan T, Malik A (1992) Fibrinogen degradation product fragment D induces endothelial cell detachment by activation of cell-mediated fibrinolysis. J Clin Invest 90(6):2508–2516PubMedGoogle Scholar
  22. 22.
    Bosso F, Lang S, Maron M (1990) Role of hemodynamics and vagus nerves in development of fibrin-induced pulmonary edema. J Appl Physiol 69(6):2227–2232PubMedGoogle Scholar
  23. 23.
    Trepat X, Grabulosa M, Buscemi L, Rico F, Farre R, Navajas D (2005) Thrombin and histamine induce stiffening of alveolar epithelial cells. J Appl Physiol 98(4):1567–1574PubMedCrossRefGoogle Scholar
  24. 24.
    Bogatcheva N, Garcia J, Verin A (2002). Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67(1):75–84CrossRefGoogle Scholar
  25. 25.
    Plow E, Haas T, Zhang L, Loftus J, Smith J (2000). Ligand binding to integrins. J Biol Chem 275(29):21785–21788PubMedCrossRefGoogle Scholar
  26. 26.
    D’Souza S, Byers-Ward V, Gardiner E, Wang H, Sung S-S (1996) Identification of an active sequence within the first immunoglobulin domain of intercellular cell adhesion molecule-1 (ICAM-1) that interacts with fibrinogen. J Biol Chem 271(39):24270–24277PubMedCrossRefGoogle Scholar
  27. 27.
    Luscinskas F, Lawler J (1994) Integrins as dynamic regulators of vascular function. FASEB J 8(12):929–938PubMedGoogle Scholar
  28. 28.
    Lominadze D, Tsakadze N, Sen U, Falcone J, D’Souza S (2005) Fibrinogen- and fragment D-induced vascular constriction. Am J Physiol 288(3):H1257–H1264Google Scholar
  29. 29.
    Mogford J, Davis G, Meininger G (1997) RGDN peptide interaction with endothelial β1 integrin causes sustained endothelin-dependent vasoconstriction to rat skeletal muscle arterioles. J Clin Invest 100(6):1647–1653PubMedCrossRefGoogle Scholar
  30. 30.
    Rivas G, Fernandez J, Minton A (1999) Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry 38(29):9379–9388PubMedCrossRefGoogle Scholar
  31. 31.
    Cooper J, Del Vecchio P, Minnear F, Burhop K, Selig W, Garcia J et al (1987) Measurement of albumin permeability across endothelial monolayers in vitro. J Appl Physiol 62(3):1076–1083PubMedGoogle Scholar
  32. 32.
    Bogatcheva N, Garcia J, Verin A (2002) Role of tyrosine kinase signaling in endothelial cell barrier regulation. Vascul Pharmacol 39(4–5):201–212PubMedCrossRefGoogle Scholar
  33. 33.
    Qiao R, Yan W, Lum H, Malik A (1995) Arg-Gly-Asp peptide increases endothelial hydraulic conductivity: comparison with thrombin response. Am J Physiol Cell Physiol 269(1):C110–C117Google Scholar
  34. 34.
    Lominadze D, Roberts A, Tyagi N, Tyagi S (2006) Homocysteine causes cerebrovascular leakage in mice. Am J Physiol Heart Circ Physiol 290(3):H1206–H1213PubMedCrossRefGoogle Scholar
  35. 35.
    Lominadze D, Saari J, Percival S, Schuschke D (2004) Proinflammatory effects of copper deficiency on neutrophils and lung endothelial cells. Immunol Cell Biol 82(3):231–238PubMedCrossRefGoogle Scholar
  36. 36.
    Moshal K, Singh M, Sen U, Rosenberger D, Henderson B, Tyagi N et al (2006) Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 291(6):H2825–H2835PubMedCrossRefGoogle Scholar
  37. 37.
    Tyagi N, Ovechkin A, Lominadze D, Moshal K, Tyagi S (2006) Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. J Cell Biochem 98(5):1150–1162PubMedCrossRefGoogle Scholar
  38. 38.
    Ehringer W, Yamany S, Steier K, Farag A, Roisen F, Dozier A et al (1999) Quantitative image analysis of F-actin in endothelial cells. Microcirculation 6(4):291–303PubMedCrossRefGoogle Scholar
  39. 39.
    Lampugnani M, Resnati M, Dejana E, Marchisio P (1991) The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol 112(3):479–490PubMedCrossRefGoogle Scholar
  40. 40.
    Suehiro K, Gailit J, Plow E (1997) Fibrinogen is a ligand for integrin α5β1 on endothelial cells. J Biol Chem 272(8):5360–5366PubMedCrossRefGoogle Scholar
  41. 41.
    Curtis T, Keown-Longo P, Vincent P, Homan S, Wheatley E, Saba T (1995) Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. Am J Physiol Lung Cell Mol Physiol 269(2):L248–L260Google Scholar
  42. 42.
    Harley S, Sturge J, Powell J (2000) Regulation by fibrinogen and its products of intercellular adhesion molecule-1 expression in human saphenous vein endothelial cells. Arterioscl Thromb Vasc Biol 20(3):652–658PubMedGoogle Scholar
  43. 43.
    Kolch W (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351 (Pt 2):289–305PubMedCrossRefGoogle Scholar
  44. 44.
    Alessi D, Cuenda A, Cohen P, Dudley D, Saltiel A (1995) PD 098059 Is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270(46):27489–27494PubMedCrossRefGoogle Scholar
  45. 45.
    Favata M, Horiuchi K, Manos E, Daulerio A, Stradley D, Feeser W et al (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273(29):18623–18632PubMedCrossRefGoogle Scholar
  46. 46.
    Giancotti F, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032PubMedCrossRefGoogle Scholar
  47. 47.
    Shyy J-J, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91(9):769–775PubMedCrossRefGoogle Scholar
  48. 48.
    Bourguignon L, Gilad E, Rothman K, Peyrollier K (2005) Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK pignaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 280(12):11961–11972PubMedCrossRefGoogle Scholar
  49. 49.
    Plusokota E, D’Souza S (2000) Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival. Eur J Biochem 267(15):4693–4704CrossRefGoogle Scholar
  50. 50.
    Gordon S, Lominadze D, Saari J, Lentsch A, Schuschke D (2005) Impaired deformability of copper-deficient neutrophils. Exp Biol Med 230:543–548Google Scholar
  51. 51.
    Leoni L, Boiarski A, Desai TA (2002) Characterization of nanoporous membranes for immunoisolation: Diffusion properties and tissue effects. Biomed Microdevices 4(2):131–139CrossRefGoogle Scholar
  52. 52.
    John T, Vogel S, Tiruppathi C, Malik A, Minshall R (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284(1):L187–L196PubMedGoogle Scholar
  53. 53.
    Predescu D, Palade G (1993) Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol Heart Circ Physiol 265(2 Pt 2):H725–H733Google Scholar
  54. 54.
    Minshall R, Tiruppathi C, Vogel S, Niles W, Gilchrist A, Hamm H et al (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled Src kinase signaling pathway. J Cell Biol 150(5):1057–1070PubMedCrossRefGoogle Scholar
  55. 55.
    Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik A (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272(41):25968–25975PubMedCrossRefGoogle Scholar
  56. 56.
    Tuma P, Hubbard A (2003) Transcytosis: Crossing cellular barriers. Physiol Rev 83(3):871–932PubMedGoogle Scholar
  57. 57.
    Marchant R, Kang I, Sit P, Zhou Y, Todd B, Eppell S et al (2002) Molecular views and measurements of hemostatic processes using atomic force microscopy. Curr Protein Pept Sci 3(3):249–274PubMedCrossRefGoogle Scholar
  58. 58.
    Potschka M (1987) Universal calibration of gel permeation chromatography and determination of molecular shape in solution. Ann Biochem 162(1):47–64CrossRefGoogle Scholar
  59. 59.
    Vink H, Duling B (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278(1):H285–H289PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Neetu Tyagi
    • 1
  • Andrew M. Roberts
    • 1
  • William L. Dean
    • 2
  • Suresh C. Tyagi
    • 1
  • David Lominadze
    • 1
  1. 1.Department of Physiology and Biophysics, Health Sciences Center, A-1115University of LouisvilleLouisvilleUSA
  2. 2.Department of Biochemistry and Molecular Biology, Health Sciences CenterUniversity of LouisvilleLouisvilleUSA

Personalised recommendations