Molecular and Cellular Biochemistry

, Volume 306, Issue 1–2, pp 201–212 | Cite as

Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line

  • Matthias Christgen
  • Matthias Ballmaier
  • Henriette Bruchhardt
  • Reinhard von Wasielewski
  • Hans Kreipe
  • Ulrich Lehmann


“Side population” (SP) cells, which pump out the fluorescent dye H33342 via the ABCG2 transporter, define a putative stem/progenitor cell population in the mammary gland. Breast cancer SP cells recently isolated from the MCF-7 cell line possess similar properties and may represent stem cell-like cancer cells. This study extends SP cell analysis to a broad panel of human breast cancer cell lines and investigates the expression of differentiation-associated markers in isolated cancer SP cells. Expression of ABCG2 was determined in 16 breast cancer cell lines by quantitative RT-PCR, Western blotting and immunohistochemistry. Subsequently, all cell lines were screened for the presence of SP cells. Human breast cancer cell lines commonly express ABCG2. ABCG2-immunoreactivity was clearly restricted to rare cancer cells in several cell lines including Cal-51. Analysis of H33342-labeled Cal-51 cells revealed a small fraction of putative SP cells accounting for one percent of all cells. The genuine nature of Cal-51 SP cells was unambiguously verified by demonstrating a 30-fold increased ABCG2-expression in isolated Cal-51 SP cells. During in vitro expansion, Cal-51 SP cells generated heterologous non-SP (NSP) cells and ABCG2-expression declined dramatically. In contrast, NSP cells failed to sustain proliferation. Freshly isolated Cal-51 SP cells also exhibited increased expression of Muc1 and CALLA. Noteworthy, non-malignant mammary epithelial SP cells lack these differentiation markers, highlighting fundamental differences between non-malignant and breast cancer-derived SP cells. In summary, we established Cal-51 SP cells as a novel in vitro model to study differential gene expression in breast cancer-derived SP and NSP cells.


Cancer stem cells Differentiation Intratumoral heterogeneity BCRP1 Cal51 


  1. 1.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  2. 2.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511PubMedCrossRefGoogle Scholar
  3. 3.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn N, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071PubMedCrossRefGoogle Scholar
  4. 4.
    Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 101:4158–4163PubMedCrossRefGoogle Scholar
  5. 5.
    Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512PubMedCrossRefGoogle Scholar
  6. 6.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–70PubMedCrossRefGoogle Scholar
  7. 7.
    Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco M, Dale TC, Smalley MJ (2003) Functional and molecular characterization of mammary side population cells. Breast Cancer Res 5:R1-R8PubMedCrossRefGoogle Scholar
  8. 8.
    Clarke R, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456PubMedCrossRefGoogle Scholar
  9. 9.
    Behbod F, Xian W, Shaw CA, Hilsenbeck SG, Tsimelzon A, Rosen JM (2006) Transcriptional profiling of mammary gland side population cells. Stem cells 24:1065–1074PubMedCrossRefGoogle Scholar
  10. 10.
    Jonker JW, Freeman J, Bolscher E, Musters S, Alvi AJ, Titley I, Schinkel AH, Dale TC (2005) Contribution of the ABCG2 Transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem cells 23:1059–1065PubMedCrossRefGoogle Scholar
  11. 11.
    Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E, Mesman E, Dale TC, Schinkel AH (2005) The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med 11:127-129PubMedCrossRefGoogle Scholar
  12. 12.
    Challen GA, Little MH (2006) A side order of stem cells: The SP phenotype. Stem cells 24:3–12PubMedCrossRefGoogle Scholar
  13. 13.
    Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes H33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28PubMedGoogle Scholar
  14. 14.
    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786PubMedCrossRefGoogle Scholar
  15. 15.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct „side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCrossRefGoogle Scholar
  16. 16.
    Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65:6207-6219PubMedCrossRefGoogle Scholar
  17. 17.
    Haraguchi N, Utsunomiya T, Inoues H, Tanaka F, Mimori K, Barnard GH, Mori M (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem cells 24:506–513PubMedCrossRefGoogle Scholar
  18. 18.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, MacLaughlin DT, Donahoe PK (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 103:11154–11159PubMedCrossRefGoogle Scholar
  19. 19.
    Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H (2006) Side population purified from hepatocellular carcinoma harbours cancer stem cell-like properties. Hepatology 44:240–251PubMedCrossRefGoogle Scholar
  20. 20.
    Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/ß-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623PubMedCrossRefGoogle Scholar
  21. 21.
    Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V, Yamashita S (2007) Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology 148:1797–1803Google Scholar
  22. 22.
    Hill RP (2006) Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66:1891–1896PubMedCrossRefGoogle Scholar
  23. 23.
    Setoguchi T, Taga T, Kondo T (2004) Cancer stem cells persist in many cancer cell lines. Cell Cycle 3:414–415PubMedGoogle Scholar
  24. 24.
    Locke M, Heywood M, Fawell S, Mackenzie IC (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65:8944–8950PubMedCrossRefGoogle Scholar
  25. 25.
    Böcker W, Moll R, Poremba C, Holland R, vanDiest PJ, Dervan P, Burger H, Wai D, Diallo RI, Brand B, Herbst H, Schmidt A, Lerch MM, Buchwallow IB. (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: A new cell biological concept. Lab Invest 82:737–745PubMedGoogle Scholar
  26. 26.
    Uphoff CC, Drexler HG (2005) Detection of mycoplasma contamination. Methods Mol Biol 290:13–23PubMedGoogle Scholar
  27. 27.
    von Wasilewski R, Mengel M, Gignac S, Wilkens L, Werner M, Georgii A (1997) Tyramine amplification technique in routine immunohistochemistry. J Histochem Cytochem 45:1455–1459Google Scholar
  28. 28.
    Diestra JE, Scheffer GL, Catala I, Maliepaard M, Schellens JHM, Scheper RJ, Gema-Lluch JR, Izquierdo MA (2002) Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol 198:213–219PubMedCrossRefGoogle Scholar
  29. 29.
    Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50PubMedGoogle Scholar
  30. 30.
    Ifergan I, Scheffer GL, Assaraf YG (2005) Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res 65:10952–10958PubMedCrossRefGoogle Scholar
  31. 31.
    Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6:92–97PubMedGoogle Scholar
  32. 32.
    Nakanishi T, Bailey-Dell KJ, Hassel BA, Shiozawa K, Sullivan DM, Turner J, Ross DD (2006) Novel 5′ UTR region variants of BCRP mRNA are differentially expressed in drug-selected cancer cells and in normal human tissues: Implication for drug resistance, tissue-specific expression and alternative promotor usage. Cancer Res 66:5007–5011PubMedCrossRefGoogle Scholar
  33. 33.
    Imai Y, Ishikawa E, Asada S, Sugimoto Y (2005) Estrogen-mediated post-transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res 65:596–604PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Matthias Christgen
    • 1
  • Matthias Ballmaier
    • 2
  • Henriette Bruchhardt
    • 1
  • Reinhard von Wasielewski
    • 1
  • Hans Kreipe
    • 1
  • Ulrich Lehmann
    • 1
  1. 1.Institute of PathologyHannover Medical SchoolHannoverGermany
  2. 2.Department of Pediatric HaematologyHannover Medical SchoolHannoverGermany

Personalised recommendations