Molecular and Cellular Biochemistry

, Volume 298, Issue 1–2, pp 59–68 | Cite as

Evaluation of SAT-1, SAT-2 and GalNAcT-1 mRNA in colon cancer by real-time PCR

  • Rosalba Gornati
  • Valentina Chini
  • Simona Rimoldi
  • Maurizio Meregalli
  • Eugenio Schiaffino
  • Giovanni Bernardini
Original Paper

Abstract

By qualitative and quantitative PCR, we evaluated the expression of three messengers coding for SAT-1, SAT-2 and GalNAcT-1 in human samples of intestinal cancer and some cell lines (breast cancer and melanomas). Qualitative PCR demonstrated, in human tissues but not in the cell lines examined, the presence of an mRNA that lacks hexon 3; experiments performed on transfected SKMEL-28 excluded a regulative role of this noncanonical mRNA. Data from real-time PCR, statistically analysed by ANOVA indicated that the mRNA expression of all the considered glycosyltransferases (SAT-1, SAT-2 and GalNAcT-1) was significantly different in tumours versus their own control. The ganglioside patterns in the examined samples did not correlate with mRNA expression; this finding demonstrates that ganglioside expression is the result of a very complex balance between anabolic and catabolic enzyme activities.

Although this study is still preliminary, it opens a new possibility for neoplastic prognosis finding potential molecular markers among the mRNAs that codify for glycosyltransferases.

Keywords

Colon cancer Ganglioside Molecular markers Real-Time PCR Tumour Glycosyltransferases 

Abbreviations

Ganglioside nomenclature is in accordance with Svennerholm [1] and the IUPAC-IUBMB recom- mendations [2].

 

Cer

ceramide

GlcCer

β-Glc-(1–1)-Cer

LacCer

β-Gal-(1–4)-β-Glc-(1–1)-Cer

GM3

II3Neu5Ac-LacCer

GM2

II3Neu5Ac-β-GalNac-(1–4)-β-Gal-(1–4)-β-Glc-(1–1)-Cer

GM1

II3Neu5AcGg4Cer

GD3

II3(Neu5Ac)2LacCer

GD1a

IV3Neu5AcII3Neu5 AcGgOse4Cer

GD1b

II3(Neu5Ac)2GgOse4Cer

GT1b

IV3Neu5AcII3(Neu5Ac)2 GgOse4Cer

GQ1b

IV3(Neu5Ac)2II3 (Neu5Ac)2GgOse4Cer

Neu5Ac

N-acetylneuraminic acid

HPTLC

High Performance Thin Layer Chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was authorized by San Carlo Borromeo Hospital (Milan, Italy) after written informed consent was received from the patients according to the protocol submitted and approved by the local ethical committee. We wish to thank Professor Binelli, DBSM Università dell’Insubria, Varese, for help with the statistical analysis. Supported by a grant from Consorzio Italiano per le Biotecnologie (C.I.B.) 2003.

References

  1. 1.
    Svennerholm L (1980) Ganglioside designation. Adv Exp Biol Med 125:11Google Scholar
  2. 2.
    IUPACIUBMB Joint Commission on Biochemical Nomenclature (1998) The nomenclature of lipids. Pure Appl Chem 312:167–175Google Scholar
  3. 3.
    Koh Y, Tsunoda T, Iwahashi M, Yamaue H, Ishimoto K, Tanimura H, Fukumoto H, Nakamura T, Tatsumi Y, Shimizu M, Saijo N, Nishio K (2002) Decreased expression of α2,8 sialyltransferase and increased expression of β1,4N-Acetylgalactosaminyltransferase in gastrointestinal cancers. Exp Biol Med 227:196–200Google Scholar
  4. 4.
    Malisan F, Testi R (2002) GD3 in cellular ageing and apoptosis. Exp Gerontol 37:1273–1282PubMedCrossRefGoogle Scholar
  5. 5.
    Prokazova NV, Bergelson LD (1994) Gangliosides and atherosclerosis. Lipids 29:1–5PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang X, Kiechle FL (2004) Glycosphingolipids in health and disease. Ann Clin Lab Sci 34(1):3–13PubMedGoogle Scholar
  7. 7.
    Yowler BC, Schengrund CL (2004) Glycosphingolipids-sweets for botulinum neurotoxin. Glycoconj J 21(6):287–293PubMedCrossRefGoogle Scholar
  8. 8.
    Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276(34):32274–32281PubMedCrossRefGoogle Scholar
  9. 9.
    Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56(4):622–647PubMedGoogle Scholar
  10. 10.
    Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22(17):4346–4355PubMedCrossRefGoogle Scholar
  11. 11.
    Guerrera M, Ladisch S (2003) N-Butyldeoxynojirimycin inhibits murine melanoma cell ganglioside metabolism and delay tumor onset. Cancer Lett 201:231–240CrossRefGoogle Scholar
  12. 12.
    Zeng G, Gao L, Birklè S, Yu RK (2000) Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res 60:6670–6676PubMedGoogle Scholar
  13. 13.
    Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5318PubMedGoogle Scholar
  14. 14.
    Inufusa H, Kojima N, Yasutomi M, Hakomori S (1991) Human lung adenocarcinoma cell lines with different lung colonization potential (LCP), and a correlation between expression of sialosyl dimeric Le(x) (defined by MAb FH6) and LCP. Clin Exp Metastasis 9(3):245–257PubMedCrossRefGoogle Scholar
  15. 15.
    Gornati R, Rizzo AM, Tong XW, Berra B, Bernardini G (1995) Glycolipid patterns durino Xenopus embryo development. Cell Biol Int 19:183–189PubMedCrossRefGoogle Scholar
  16. 16.
    Bernardini G, Rizzo MA, Gornati R, Rossi F, Berra B (1996) Tissue and developmental specificity of a plysialo-ganglioside species in the amphibian Xenopus. Cell Biol Int 20(10):667–672PubMedCrossRefGoogle Scholar
  17. 17.
    Fredman P, Hedberg K, Brezicka T (2003) Gangliosides as therapeutic targets for cancer. BioDrugs 17(3):155–167PubMedCrossRefGoogle Scholar
  18. 18.
    Fredman P, Mansson JE, Dellheden B, Bostrom K, von Holst H (1999) Expression of the GM1-species, [NeuN]-GM1, in a case of human glioma. Neurochem Res 24(2):275–279PubMedCrossRefGoogle Scholar
  19. 19.
    Romppanen J, Eskelinen M, Tikanoja S, Mononen I (1997) Total and lipid-bound serum sialic acid in benign and malignant breast disease. Anticancer Res 17(2B):1249–1253PubMedGoogle Scholar
  20. 20.
    Gornati R, Basu S, Montorfano G, Berra B (1995) Glycosyltransferase activity in human meningiomas. Preliminary results. Cancer Biochem Biophys 15:1–10PubMedGoogle Scholar
  21. 21.
    Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside GD2 in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61:4244–4252PubMedGoogle Scholar
  22. 22.
    Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in old bottle. PNAS 99:1031–1033Google Scholar
  23. 23.
    Birklè S, Zeng G, Gao L, Yu RK, Aubry J (2003) Role of tumor-associate gangliosides in cancer progression. Biochimie 85:455–463PubMedCrossRefGoogle Scholar
  24. 24.
    Furukawa K, Tokuda N, Okuda T, Tajima O, Furukawa K (2004) Glycosphingolipids in engineered mice: insights into function. Sem Cell Develop Biol 15:389–396CrossRefGoogle Scholar
  25. 25.
    Dall’Olio F, Chiricolo M (2001) Sialyltransferases in cancer. Glycoconj J 18:841–850PubMedCrossRefGoogle Scholar
  26. 26.
    Lloyd K, Furukawa K (1998) Biosynthesis and function of gangliosides: recent advance. Glycoconj J 15:627–636PubMedCrossRefGoogle Scholar
  27. 27.
    Sturzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B Biochem Mol Biol 130(3):281–289PubMedCrossRefGoogle Scholar
  28. 28.
    Aerts J, Wynendaele W, Paridaens R, Christiaens MR, van den Bogaert W, van Oosterom AT, Vandekerckhove F (2001) A real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to detect breast carcinoma cells in peripheral blood. Ann Oncol 12(1):39–46PubMedCrossRefGoogle Scholar
  29. 29.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7): research0034.I–0034.IIGoogle Scholar
  30. 30.
    Lewis AM, Martin RC (2006) The treatment of hepatic metastases in colorectal carcinoma. Am Surg 72(6):466–473PubMedGoogle Scholar
  31. 31.
    Esposito A, Mancini R, Ettorre G, Garufi C, Saracca E, Arcieri S, Cosimelli M (2003) A combined approach of neoadjuvant chemotherapy and surgery for colorectal liver metastases. J Exp Clin Cancer Res 22:197–202PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Rosalba Gornati
    • 1
  • Valentina Chini
    • 1
  • Simona Rimoldi
    • 1
  • Maurizio Meregalli
    • 2
  • Eugenio Schiaffino
    • 3
  • Giovanni Bernardini
    • 1
  1. 1.Dipartimento di Biotecnologie e Scienze MolecolariUniversità dell’InsubriaVareseItaly
  2. 2.Unità Operativa di Oncologia MedicaOspedale San Carlo BorromeoMilanoItaly
  3. 3.Unità Operativa di Anatomia PatologicaOspedale San Carlo BorromeoMilanoItaly

Personalised recommendations