Hypertonicity activates GSK3β in tumor cells

  • Pablo Perez-PineraEmail author
  • Manuel Menendez-Gonzalez
  • Miguel del Valle
  • Jose Antonio Vega


Responses to perturbations in the composition of the extracellular environment are crucial to maintain cell and tissue homeostasis. In hypertonic conditions cell lines derived from kidney epithelium initiate a variety of stress responses to maintain cell viability that include activation of Mitogen Activated Protein Kinases (MAPK). We previously showed that NaCl also regulates MAPK in different tumor cell lines and we now show that when hypertonic conditions induced with NaCl and other osmolytes were used to stimulate several tumor cell lines, Glycogen Synthase Kinase 3β (GSK3β) was rapidly dephosphorylated at serine 9 and its kinase activity was increased. This response was both time- and dose-dependent, it was independent of the Akt signaling pathway and did not increase steady state levels of phosphorylation of β-catenin, although the data suggested that activated GSK3β could regulate the activity of ERK1/2.


GSK3β hypertonicity NaCl cell signaling 


  1. 1.
    Parker JC: In defense of cell volume? Am J Physiol 265: C1191–1200, 1993PubMedGoogle Scholar
  2. 2.
    Burg MB: Molecular basis of osmotic regulation. Am J Physiol 268: F983–996, 1995PubMedGoogle Scholar
  3. 3.
    Umenishi F, Schrier RW: Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem 278: 15765–15770, 2003PubMedCrossRefGoogle Scholar
  4. 4.
    Bach PH, Nguyen TK: Renal papillary necrosis–40 years on. Toxicol Pathol 26: 73–91, 1998PubMedCrossRefGoogle Scholar
  5. 5.
    Perez-Pinera P, Menendez-Gonzalez M, del Valle M, Vega JA: Sodium chloride regulates Extracellular Regulated Kinase 1/2 in different tumor cell lines. Mol Cell Biochem In pressGoogle Scholar
  6. 6.
    Jope RS, Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29: 95–102, 2004PubMedCrossRefGoogle Scholar
  7. 7.
    Grimes CA, Jope RS: The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65: 391–426, 2001PubMedCrossRefGoogle Scholar
  8. 8.
    Rao R, Hao CM, Breyer MD: Hypertonic stress activates glycogen synthase kinase 3beta-mediated apoptosis of renal medullary interstitial cells, suppressing an NFkappaB-driven cyclooxygenase-2-dependent survival pathway. J Biol Chem 279: 3949–3955, 2004PubMedCrossRefGoogle Scholar
  9. 9.
    Roger F, Martin PY, Rousselot M, Favre H, Feraille E: Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop. Requirement of p38 kinase for the regulatory volume increase response. J Biol Chem 274: 34103–34110, 1999PubMedCrossRefGoogle Scholar
  10. 10.
    Bustamante M, Roger F, Bochaton-Piallat ML, Gabbiani G, Martin PY, Feraille E: Regulatory volume increase is associated with p38 kinase-dependent actin cytoskeleton remodeling in rat kidney MTAL. Am J Physiol Renal Physiol 285: F336–347, 2003PubMedGoogle Scholar
  11. 11.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947, 1997PubMedCrossRefGoogle Scholar
  12. 12.
    Maier D, Jones G, Li X, Schonthal AH, Gratzl O, Van Meir EG, Merlo A: The PTEN lipid phosphatase domain is not required to inhibit invasion of glioma cells. Cancer Res 59: 5479–5482, 1999PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Pablo Perez-Pinera
    • 1
    • 5
    Email author
  • Manuel Menendez-Gonzalez
    • 2
  • Miguel del Valle
    • 1
  • Jose Antonio Vega
    • 1
    • 3
    • 4
  1. 1.Departamento de Morfología y Biología CelularUniversidad de OviedoOviedoSpain
  2. 2.Hospital Universitario Central de AsturiasOviedoSpain
  3. 3.Instituto Universitario de OncologiaUniversidad de OviedoOviedoSpain
  4. 4.Departamento de Ciencias Médicas, Sección de Anatomía y Embriología, Facultad de MedicinaUniversidad San Pablo-CEUMadridSpain
  5. 5.Departamento de Morfologia y Biologia Celular, Facultad de MedicinaUniversidad de OviedoOviedoSpain

Personalised recommendations