Advertisement

Molecular and Cellular Biochemistry

, Volume 288, Issue 1–2, pp 65–71 | Cite as

The Phosphoenolpyruvate Carboxykinase of Mycobacterium Tuberculosis Induces Strong Cell-Mediated Immune Responses in Mice

  • Keyi Liu
  • Xuelian Ba
  • Jinzhi Yu
  • Jin Li
  • Qingkuan Wei
  • Guangdong Han
  • Guiping Li
  • Yong Cui
Article

Abstract

Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes guanosine or adenosine mononucleotide-dependent reversible conversion of oxaloacetate (OAA) and phosphoenolpyruvate (PEP). Mycobacterium (M) tuberculosis possesses a putative GTP-dependent PEPCK. To analyze the immune responses caused by PEPCK, the effects of PEPCK on the induction of CD4+ T cells and cytokines such as IFN-γ, IL-12 and TNF-α were evaluated in mice. It was found that the number of CD4+ T cells was increased in the PEPCK immunized mice although the change of the number of CD8+ T cells was not significant. The cytokines IFN-γ, IL-12 and TNF-α were increased significantly in the mice immunized with PEPCK than those of incomplete adjuvant. These characteristics were further demonstrated in the mice infected by pckA mutated BCG strain. The results indicate that PEPCK can effectively induce cell-mediated immune response by increasing activity of cytokines and PEPCK may be a promising new subunit vaccine candidate for tuberculosis.

Keywords

Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase cell immune response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matte A, Tari LW, Goldie H, Delbaere TJ: Structure and mechanism of phosphoenolpyruvate carboxykinase. J Biol Chem 272: 8105–8108, 1997PubMedCrossRefGoogle Scholar
  2. 2.
    Hanson RW, Patel YM: P-Enolpyruvate carboxykinase: the gene and the enzyme. In: Meister A (Ed) Advances in Enzymology (Meister, A., ed.), John Wiley and Sons, New York, NY. pp. 203–281, 1994Google Scholar
  3. 3.
    Barbieri JT, Austin FE, Cox CD: Distribution of glucose incorporated into macromolecular material by treponema pallidum. Infect Immun 31: 1071–1077, 1981PubMedGoogle Scholar
  4. 4.
    Schocke L, Weimer PJ: Purification and characterization of phosphoenolpyruvate carboxykinase from the anaerobic ruminal bacterium Ruminococcus flavefaciens. Arch Microbiol 167: 289–294, 1997PubMedCrossRefGoogle Scholar
  5. 5.
    Rohrer SP, Saz HJ, Nowak T: Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum. J Biol Chem 261: 13049–13055, 1986PubMedGoogle Scholar
  6. 6.
    Cymeryng C, Cazzulo JJ, Cannata JJ: Phosphoenolpyruvate carboxykinase from Trypanosoma cruzi. Purification and physicochemical and kinetic properties. Mol Biochem Parasitol 73(1–2): 91–101, 1995PubMedCrossRefGoogle Scholar
  7. 7.
    Cegielski JP, Chin DP, Espinal MA, Frieden TR, Rodriquez Cruz R, Talbot EA, Weil DE, Zaleskis R, Raviglione MC: The global tuberculosis situation. Progress and problems in the 20th century, prospects for the 21st century. Infect Dis Clin North Am 16(1): 1–58, 2002PubMedCrossRefGoogle Scholar
  8. 8.
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CEIII, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver S, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton S, Squares S, Squares R, Sulston JE, Taylor K, Whitehead S, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685): 537–544, 1998PubMedCrossRefADSGoogle Scholar
  9. 9.
    Mukhopadhyay B, Edward M, Concar, Ralph S, Wolfe: A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J Biological Chem 276(19): 16137–16145, 2001CrossRefGoogle Scholar
  10. 10.
    Collins DM, Wilson T, Campbell S, Buddle BM, Wards BJ, Hotter G, De Lisle GW: Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures. Microbiology 148: 3019–3027, 2002PubMedGoogle Scholar
  11. 11.
    Liu K, Yu J, Russell DG: pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149(Pt 7): 1829–1835, 2003PubMedCrossRefGoogle Scholar
  12. 12.
    Liu K, Zhang D, Wei Q, Li J, Li G, Yu J: Biological role analysis of a surface antigen of Toxoplasma gondii. World J Gastroenterol, in impress, 2006Google Scholar
  13. 13.
    Brewer TF, Colditz GA: Bacille Calmette-Guerin vaccination for the prevention of tuberculosis in health care workers. Clin Infect Dis 20(1): 136–142, 1995PubMedGoogle Scholar
  14. 14.
    Fine PEM: The BCG story: lessons from the past and implications for the future. Rev Infect Dis 12: 353–359, 1989MathSciNetGoogle Scholar
  15. 15.
    Orme IM, Beyond BCG: the potential for a more effective B vaccine. Mol Med Today 5: 487–492, 1999PubMedCrossRefGoogle Scholar
  16. 16.
    Collins DM: New tuberculosis vaccines based on attenuated strains of the Mycobacterium tuberculosis complex. Immunol Cell Biol 78(4): 342–348, 2000PubMedCrossRefGoogle Scholar
  17. 17.
    Hernandez HJ, Wang N, Tzellas MJ, Stadecker: Expression of class II, but not class I, major histocompatibility complex molecules is required for granuloma formation in infection with Schistosoma mansoni. Eur J Immunol 7: 1170–1176, 1997Google Scholar
  18. 18.
    Lyadova IV, Eruslanov EB, Khaidukov SV, Yeremeev VV, Majorov KB, Pichugin AV, Nikonenko BV, Kondratieva TK, Apt AS: Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. J Immunol 165(10): 5921–5931, 2000PubMedGoogle Scholar
  19. 19.
    Junqueira-Kipnis AP, Turner J, Gonzalez-Juarrero M, Turner OC, Orme IM: Stable T-cell population expressing an effector cell surface phenotype in the lungs of mice chronically infected with Mycobacterium tuberculosis. Infect Immun 72(1): 570–575, 2004PubMedCrossRefGoogle Scholar
  20. 20.
    Muller I, Cobbold SP, Waldmann H, Kaufmann SH: Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2 + T cells. Infect Immun 55: 2037–2041, 1987PubMedGoogle Scholar
  21. 21.
    Orme IM, Collins FM: Adoptive protection of the Mycobacterium tuberculosis-infected lung. Cell Immunol 84: 113–120, 1984PubMedCrossRefGoogle Scholar
  22. 22.
    Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL: Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J Immunol 162: 5407–5416, 1999PubMedGoogle Scholar
  23. 23.
    Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, Vermund SH, Klein RS: A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 320: 545–550, 1989PubMedCrossRefGoogle Scholar
  24. 24.
    Chiodini RJ, Davis WC: The cellular immunology of bovine paratuberculosis: the predominant response is mediated by cytotoxic gamma/delta T lymphocytes which prevent CD4+ activity. Microb Pathog 13(6):447–463, 1992PubMedCrossRefGoogle Scholar
  25. 25.
    Rajavelu P, Das SD: Cell-mediated immune responses of healthy laboratory volunteers to sonicate antigens prepared from the most prevalent strains of Mycobacterium tuberculosis from South India harboring a single copy of IS6110. Clin Diagn Lab Immunol 10(6): 1149–1152, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Janeway CA, Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 20: 197–216, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Trinchieri G: Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251–276, 1995PubMedCrossRefGoogle Scholar
  28. 28.
    Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146, 2003PubMedCrossRefGoogle Scholar
  29. 29.
    Abbas AK, Murphy KM, Sher A: Functional diversity of helper T lymphocytes. Nature 383: 787–793, 1996PubMedCrossRefADSGoogle Scholar
  30. 30.
    Mathew RC, Boros DL: Anti-L3T4 antibody treatment suppresses hepatic granuloma formation and abrogates antigen-induced interleukin-2 production in Schistosoma mansoni infection. Infect Immun 54: 820–826, 1986PubMedGoogle Scholar
  31. 31.
    Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ: Tumour necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2: 561–572, 1995PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia I, Miyazaki Y, Marchal G, Lesslauer W, Vassalli P: High sensitivity of transgenic mice expressing soluble TNFR1 fusion protein to mycobacterial infections: synergistic action of TNF-α and IFN-gamma in the differentiation of protective granulomas. Eur J Immunol 27: 3182–3190, 1997PubMedGoogle Scholar
  33. 33.
    Moreira AL, Tsenova-Berkova L, Wang J, Laochumroonvorapong P, Freeman S, Freedman VH: Effect of cytokine modulation by thalidomide on the granulomatous response in murine tuberculosis. Tuberc Lung Dis 78: 47–55, 1997CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Keyi Liu
    • 1
  • Xuelian Ba
    • 1
  • Jinzhi Yu
    • 2
  • Jin Li
    • 1
  • Qingkuan Wei
    • 1
  • Guangdong Han
    • 1
  • Guiping Li
    • 1
  • Yong Cui
    • 1
  1. 1.Shandong Academy of Medical SciencesShandongChina
  2. 2.Veterinary Medical CollegeCornell UniversityIthacaUSA

Personalised recommendations