Molecular and Cellular Biochemistry

, Volume 282, Issue 1–2, pp 169–176

Association of hypoglutathionemia with reduced Na+/K+ ATPase activity in type 2 diabetes and microangiopathy

  • Rangasamy Sampathkumar
  • Muthuswamy Balasubramanyam
  • Cherian Tara
  • Mohan Rema
  • Viswanathan Mohan
Article

Abstract

Objective: Although recent studies link altered cellular redox state to protein dysfunction in various disease-states, such associations are least studied in clinical diabetes. Therefore, this study assessed the levels of reduced glutathione (GSH) and Na+/K+ ATPase activities in type 2 diabetic patients with and without microangiopathy. Methods: The study group comprised of a total of 160 subjects, which included non-diabetic healthy controls (n = 40) and type 2 diabetic patients without (n = 60) and with microangiopathy (n = 60), defined as presence of retinopathy with or without nephropathy. Erythrocyte Na+/K+ ATPase activity and GSH levels were estimated spectrophotometrically and fluorometry was used to determine the plasma thiobarbituric acid reactive substances (TBARS) and serum advanced glycation end products (AGEs). Results: GSH levels in diabetic subjects without (4.8± 0.15 μmol/g Hb) and with microangiopathy (5.2± 0.14 μmol/g Hb) were significantly lower (p < 0.001) compared to control subjects (6.3± 0.14 μmol/g Hb). Erythrocyte Na+/K+ ATPase activity was significantly reduced (p < 0.001) in diabetes subjects with (272± 7 nmol Pi/mg protein/h) and without microangiopathy (304 ± 8) compared to control (374 ± 6) subjects. TBARS were significantly higher (p < 0.001) in diabetes subjects with (10.65± 0.81 nM/ml) and without microangiopathy (9.90± 0.5 nM/ml) compared to control subjects (5.18± 0.18 nM/ml). Advanced glycation end product levels were also significantly (p < 0.001) elevated in diabetic subjects with microangiopathy (8.2± 1.8 AU) when compared to diabetes subjects without microangiopathy (7.0± 2.0 AU) and control subjects (4.6± 1.9 AU). On multivariate regression analysis, GSH levels showed a positive association with the Na+/K+ ATPase activity and negative association with TBARS and AGE levels. Conclusion: Hypoglutathionemia and increased oxidative stress appears to be early biochemical aberrations in diabetes, and through protein alterations, oxidative stress and redox modifications may contribute to pathogenesis of diabetic microangiopathy.

Key words

advanced glycation end products (AGEs) diabetes Na+/K+ ATPase oxidative stress reduced glutathione 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thornalley PJ, McLellan AC, Lo TW, Benn J, Sonksen PH: Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci 91: 575–582, 1996PubMedGoogle Scholar
  2. 2.
    Jain SK, McVie R: Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism 43: 306–309, 1994CrossRefPubMedGoogle Scholar
  3. 3.
    Dincer Y, Alademir Z, Ilkova H, Akcay T: Susceptibility of glutathione and glutathione-related antioxidant activity to hydrogen peroxide in patients with type 2 diabetes: effect of glycemic control. Clin Biochem 35: 297–301, 2002PubMedCrossRefGoogle Scholar
  4. 4.
    Gil-del Valle L, de la C Milian L, Toledo A, Vilaro N, Tapanes R, Otero MA: Altered redox status in patients with Diabetes Mellitus type I. Pharmacol Res 51: 375–380, 2005PubMedGoogle Scholar
  5. 5.
    Ceriello A, Motz E: Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24: 816–823, 2004PubMedGoogle Scholar
  6. 6.
    Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H: Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52: 581–587, 2003PubMedGoogle Scholar
  7. 7.
    Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N: Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47: 1562–1569, 1998PubMedGoogle Scholar
  8. 8.
    Konukoglu D, Kemerli GD, Sabuncu T, Hatemi H: Relation of erythrocyte Na+/K+ ATPase activity and cholesterol and oxidative stress in patients with type 2 diabetes mellitus. Clin Invest Med 26: 279–284, 2003PubMedGoogle Scholar
  9. 9.
    Kourie JI: Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275: C1–24, 1998PubMedGoogle Scholar
  10. 10.
    Deepa M, Pradeepa R, Rema M, Mohan A, Deepa R, Shanthirani S, Mohan V: The Chennai Urban Rural Epidemiology Study (CURES) – study design and methodology (urban component) (CURES-I). J Assoc Physicians India 51: 863–870, 2003PubMedGoogle Scholar
  11. 11.
    Early Treatment of Diabetic Retinopathy Study Research Group: Grading diabetic retinopathy from stereoscopic colour fundus photographs – an extension of the modified Airlie House Classification, ETDRS Report 10. Ophthalmology 98: 786–806, 1991Google Scholar
  12. 12.
    Rema M, Mohan V, Deepa R, Ravikumar R: Association of carotid intima-media thickness and arterial stiffness with diabetic retinopathy: The Chennai Urban Rural Epidemiology Study (CURES-2). Diabetes Care 27: 1962–1967, 2004PubMedGoogle Scholar
  13. 13.
    Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499–502, 1972PubMedGoogle Scholar
  14. 14.
    Manjunath G, Sarnak MJ, Levey AS: Estimating the glomerular filtration rate. Do's and don'ts for assessing kidney function. Postgrad Med 110: 55–62, 2001PubMedCrossRefGoogle Scholar
  15. 15.
    Beutler E, Duran O, Duarte BMK: Improved method for the determination of blood glutathione. J Lab Clin Med 51: 882–888, 1963Google Scholar
  16. 16.
    Raccah D, Gallice P, Pouget J, Vague P: Hypothesis: low Na+/K+ ATPase activities of the red cell membrane, a potential marker of the predisposition to diabetic neuropathy. Diabet Metab 18: 236–241, 1992Google Scholar
  17. 17.
    Sampathkumar R, Balasubramanyam M, Rema M, Premanand C, Mohan V: A novel advanced glycation index (AGI) and its association with diabetes and microangiopathy. Metabolism 54: 1002–1007, 2005CrossRefPubMedGoogle Scholar
  18. 18.
    Yagi K: A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212–216, 1976CrossRefPubMedGoogle Scholar
  19. 19.
    Adaikalakoteswari A, Balasubramanyam M, Mohan V: Telomere shortening in patients with type 2 diabetes. Diabet Med 22: 1151–1156, 2005CrossRefPubMedGoogle Scholar
  20. 20.
    Hayden MR, Tyagi SC: Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. JOP 3: 86–108, 2002PubMedGoogle Scholar
  21. 21.
    Greismacher A, Kindhauser M, Andert SE, Toma C, Knoebl P, Pietschmann P, Prager R, Schnack C, Schemthaner G, Mueller MM: Enhanced serum levels of thiobarbituric acid-reactive-substances in diabetes mellitus. Am J Med 98: 469–474, 1995Google Scholar
  22. 22.
    Telci A, Cakatay U, Kayali R, Erdogan C, Orhan Y, Sivas A, Akcay T: Oxidative protein damage in plasma of type 2 diabetic patients. Horm Metab Res 32: 40–43, 2000PubMedCrossRefGoogle Scholar
  23. 23.
    Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T: Oxidative damage to DNA in diabetes mellitus. Lancet 347: 444–445, 1996CrossRefPubMedGoogle Scholar
  24. 24.
    Darmaun D, Smith SD, Sweeten S, Sager BK, Welch S, Mauras N: Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes 54: 190–196, 2005PubMedGoogle Scholar
  25. 25.
    Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram KR: Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci 90: 255–260, 1996PubMedGoogle Scholar
  26. 26.
    Sima AA, Sugimoto K: Experimental diabetic neuropathy: an update. Diabetologia 42: 773–88, 1999CrossRefPubMedGoogle Scholar
  27. 27.
    Michea L, Irribarra V, Goecke IA, Marusic ET: Reduced Na-K pump but increased Na-K-2Cl cotransporter in aorta of streptozotocin-induced diabetic rat. Am J Physiol Heart Circ Physiol 280: H851–H858, 2001PubMedGoogle Scholar
  28. 28.
    Beutler E, Kuhl W, Sacks P: Sodium-potassium-ATPase activity is influenced by ethnic origin and not by obesity. N Engl J Med 29(309): 756–760, 1983Google Scholar
  29. 29.
    Vague P, Dufayet D, Coste T, Moriscot C, Jannot MF, Raccah D: Association of diabetic neuropathy with Na+/K+ ATPase gene polymorphism. Diabetologia 40: 506–511, 1997PubMedGoogle Scholar
  30. 30.
    Jannot MF, Raccah D, De La Tour DD, Coste T, Vague P: Genetic and environmental regulation of Na+/K+ adenosine triphosphatase activity in diabetic patients. Metabolism 51: 284–291, 2002CrossRefPubMedGoogle Scholar
  31. 31.
    Huschenbett J, Zaidi A, Michaelis ML: Sensitivity of the synaptic membrane Na+/Ca2+ exchanger and the expressed NCX1 isoform to reactive oxygen species. Biochim Biophys Acta 1374: 34–46, 1998PubMedGoogle Scholar
  32. 32.
    Kato K, Shao Q, Elimban V, Lukas A, Dhalla NS: Mechanism of depression in cardiac sarcolemmal Na+/K+-ATPase by hypochlorous acid. Am J Physiol Cell Physiol. 275: C826–C831, 1998Google Scholar
  33. 33.
    Jenner AM, Ruiz JE, Dunster C, Halliwell B, Mann GE, Siow RC: Vitamin C protects against hypochlorous acid-induced glutathione depletion and DNA base and protein damage in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 22: 574–580, 2002PubMedGoogle Scholar
  34. 34.
    Ramamurthy B, Jones AD, Larsson L: Glutathione reverses early effects of glycation on myosin function. Am J Physiol 285: C419–C424, 2003Google Scholar
  35. 35.
    Tsakiris S, Schulpis KH, Marinou K, Behrakis P: Protective effect of l-cysteine and glutathione on the modulated suckling rat brain Na+, K+-ATPase and Mg2+-ATPase activities induced by the in vitro galactosaemia. Pharmacol Res 49: 475–479, 2004CrossRefPubMedGoogle Scholar
  36. 36.
    Streck EL, Zugno AI, Tagliari B, Franzon R, Wannmacher CM, Wajner M, Wyse AT: Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26: 1195–1200, 2001CrossRefPubMedGoogle Scholar
  37. 37.
    Giblin FJ: Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther 16: 121–135, 2000PubMedCrossRefGoogle Scholar
  38. 38.
    Sampathkumar R, Balasubramanyam M, Sudarslal S, Rema M, Mohan V, Balaram P: Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy. Clin Biochem (in press), 2005Google Scholar
  39. 39.
    Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I: S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8: 201–212, 2004PubMedGoogle Scholar
  40. 40.
    Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi N: Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem 262: 16969–16972, 1987PubMedGoogle Scholar
  41. 41.
    Stevens A: The contribution of glycation to cataract formation in diabetes. J Am Optom Assoc 69: 519–530, 1998PubMedGoogle Scholar
  42. 42.
    Wada R, Nishizawa Y, Yagihashi N, Takeuchi M, Ishikawa Y, Yasumura K, Nakano M, Yagihashi S: Effects of OPB-9195, anti-glycation agent, on experimental diabetic neuropathy. Eur J Clin Invest 31: 513–520, 2001CrossRefPubMedGoogle Scholar
  43. 43.
    Gopaul NK, Manraj MD, Hebe A, Lee Kwai Yan S, Johnston A, Carrier MJ, Anggard EE: Oxidative stress could precede endothelial dysfunction and insulin resistance in Indian Mauritians with impaired glucose metabolism. Diabetologia 44: 706–712, 2001CrossRefPubMedGoogle Scholar
  44. 44.
    Balasubramanyam M, Koteswari A, Samapthkumar R, Premanand C, Mohan V: Screening for oxidative stress in the general population: Increased lipid peroxidation in the natural history of diabetes. Diab Metab 29: 4S167, 2003Google Scholar
  45. 45.
    Menon V, Ram M, Dorn J, Armstrong D, Muti P, Freudenheim JL, Browne R, Schunemann H, Trevisan M: Oxidative stress and glucose levels in a population-based sample. Diabet Med 21: 1346–1352, 2004CrossRefPubMedGoogle Scholar
  46. 46.
    Liu B, Bhat M, Padival AK, Smith DG, Nagaraj RH: Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes. Invest Ophthalmol Vis Sci 45: 1983–1995, 2004CrossRefPubMedGoogle Scholar
  47. 47.
    Miwa K, Nakamura J, Hamada Y, Naruse K, Nakashima E, Kato K, Kasuya Y, Yasuda Y, Kamiya H, Hotta N: The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract 60: 1–9, 2003CrossRefPubMedGoogle Scholar
  48. 48.
    Cicik E, Tekin H, Akar S, Ekmekci OB, Donma O, Koldas L, Ozkan S: Interleukin-8, nitric oxide and glutathione status in proliferative vitreoretinopathy and proliferative diabetic retinopathy. Ophthalmic Res 35: 251–255, 2003CrossRefPubMedGoogle Scholar
  49. 49.
    Craghill J, Cronshaw AD, Harding JJ: The identification of a reaction site of glutathione mixed-disulphide formation on gamma S-crystallin in human lens. Biochem J 379: 595–600, 2004CrossRefPubMedGoogle Scholar
  50. 50.
    Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, Nguyen AT, Thevenin M, Jaudon MC, Zingraff J, Verger C, Jungers P, Descamps-Latscha B: Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med 21: 845–853, 1996CrossRefPubMedGoogle Scholar
  51. 51.
    Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C: Oxidative stress in end-stage renal disease: An emerging threat to patient outcome. Nephrol Dial Transplant 18: 1272–1280, 2003PubMedGoogle Scholar
  52. 52.
    Santangelo F, Witko-Sarsat V, Drueke T, Descamps-Latscha B: Restoring glutathione as a therapeutic strategy in chronic kidney disease. Nephrol Dial Transplant 19: 1951–1955, 2004PubMedGoogle Scholar
  53. 53.
    Mohan V: Why are Indians more prone to diabetes? J Assoc Physicians India 52: 468–474, 2004PubMedGoogle Scholar
  54. 54.
    Misra A, Vikram NK: Insulin resistance syndrome (metabolic syndrome) and Asian Indians. Curr Sci 83: 1483–1496, 2002Google Scholar
  55. 55.
    Mohan V, Deepa R, Pradeepa R: Association of low adiponectin levels with the metabolic syndrome – the Chennai Urban Rural Epidemiology Study (CURES-4). Metabolism 54: 476–481, 2005CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Rangasamy Sampathkumar
    • 1
  • Muthuswamy Balasubramanyam
    • 1
    • 2
  • Cherian Tara
    • 1
  • Mohan Rema
    • 1
  • Viswanathan Mohan
    • 1
  1. 1.Madras Diabetes Research Foundation and Dr. Mohans' M.V. Diabetes Specialities CentreChennaiIndia
  2. 2.Department of Cell and Molecular BiologyMadras Diabetes Research FoundationChennaiIndia

Personalised recommendations