Molecular and Cellular Biochemistry

, Volume 287, Issue 1–2, pp 201–211

Novel Mutations that Enhance or Repress the Aggregation Potential of SOD1

  • Uma Krishnan
  • Marjatta Son
  • Bhagya Rajendran
  • Jeffrey L Elliott
Article

Abstract

Mutations in SOD1 cause FALS by a gain of function likely related to protein misfolding and aggregation. SOD1 mutations encompass virtually every domain of the molecule, making it difficult to identify motifs important in SOD1 aggregation. Zinc binding to SOD1 is important for structural integrity, and is hypothesized to play a role in mutant SOD1 aggregation. To address this question, we mutated the unique zinc binding sites of SOD1 and examined whether these changes would influence SOD1 aggregation. We generated single and multiple mutations in SOD1 zinc binding residues (H71, H80 and D83) either alone or in combination with an aggregate forming mutation (A4V) known to cause disease. These SOD1 mutants were assayed for their ability to form aggregates.

Using an in vitro cellular SOD1 aggregation assay, we show that combining A4V with mutations in non-zinc binding domains (G37R or G85R) increases SOD1 aggregation potential. Mutations at two zinc binding residues (H71G and D83G) also increase SOD1 aggregation potential. However, an H80G mutation at the third zinc binding residue decreases SOD1 aggregation potential even in the context of other aggregate forming SOD1 mutations. These results demonstrate that various mutations have different effects on SOD1 aggregation potential and that the H80G mutation appears to uniquely act as a dominant inhibitor of SOD1 aggregation.

Key words

aggregates ALS proteasome superoxide dismutase zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW: Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 92: 689–93, 1995PubMedCrossRefGoogle Scholar
  2. 2.
    2. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX: Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772–5, 1994PubMedGoogle Scholar
  3. 3.
    3. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL: An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105–16, 1995CrossRefPubMedGoogle Scholar
  4. 4.
    4. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Jr., Scott RW, Snider WD: Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13: 43–7, 1996CrossRefPubMedGoogle Scholar
  5. 5.
    5. Valentine JS, Hart PJ: Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100: 3617–22, 2003CrossRefPubMedGoogle Scholar
  6. 6.
    6. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62, 1993CrossRefPubMedGoogle Scholar
  7. 7.
    7. Johnston JA, Dalton MJ, Gurney ME, Kopito RR: Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97: 12571–6, 2000CrossRefPubMedGoogle Scholar
  8. 8.
    8. Shibata N, Hirano A, Kobayashi M, Siddique T, Deng HX, Hung WY, Kato T, Asayama K: Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J Neuropathol Exp Neurol 55: 481–90, 1996PubMedGoogle Scholar
  9. 9.
    9. Watanabe M, Dykes-Hoberg M, Culotta VC, Price DL, Wong PC, Rothstein JD: Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8: 933–41, 2001CrossRefPubMedGoogle Scholar
  10. 10.
    10. Wang J, Xu G, Borchelt DR: High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol Dis 9: 139–48, 2002CrossRefPubMedGoogle Scholar
  11. 11.
    11 Son M, Cloyd CD, Rothstein JD, Rajendran B, Elliott JL: Aggregate formation in Cu, Zn superoxide dismutase-related proteins. J Biol Chem 278: 14331–6, 2003CrossRefPubMedGoogle Scholar
  12. 12.
    12. Gaudette M, Hirano M, Siddique T: Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1: 83–9, 2000CrossRefPubMedGoogle Scholar
  13. 13.
    13. Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, Borchelt DR: Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10: 128–38, 2002CrossRefPubMedGoogle Scholar
  14. 14.
    14. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS: Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286: 2498–500, 1999CrossRefPubMedGoogle Scholar
  15. 15.
    15. Puttaparthi K, Gitomer WL, Krishnan U, Son M, Rajendran B, Elliott JL: Disease progression in a transgenic model of familial amyotrophic lateral sclerosis is dependent on both neuronal and non-neuronal zinc binding proteins. J Neurosci 22: 8790–6, 2002PubMedGoogle Scholar
  16. 16.
    16. Lindberg MJ, Tibell L, Oliveberg M: Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: decreased stability of the apo state. Proc Natl Acad Sci U S A 99: 16607–12, 2002CrossRefPubMedGoogle Scholar
  17. 17.
    17. Elliott JL: Zinc and copper in the pathogenesis of amyotrophic lateral sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 25: 1169–85, 2001CrossRefPubMedGoogle Scholar
  18. 18.
    18. Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS: Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 69: 1936–44, 1997PubMedCrossRefGoogle Scholar
  19. 19.
    19. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF, Crow JP, Cashman NR, Kondejewski LH, Chakrabartty A: Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277: 47551–6, 2002CrossRefPubMedGoogle Scholar
  20. 20.
    20. Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A: Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 279: 15499–504, 2004CrossRefPubMedGoogle Scholar
  21. 21.
    21. Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD: The copper chaperone for superoxide dismutase. J Biol Chem 272: 23469–72, 1997CrossRefPubMedGoogle Scholar
  22. 22.
    22. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH, Jr, Price DL, Sisodia SS, Cleveland DW: Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci U S A 91: 8292–6, 1994PubMedCrossRefGoogle Scholar
  23. 23.
    23. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT: Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95: 41–53, 1998CrossRefPubMedGoogle Scholar
  24. 24.
    24. Iuchi S, Hoffner G, Verbeke P, Djian P, Green H: Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine. Proc Natl Acad Sci U S A 100: 2409–14, 2003CrossRefPubMedGoogle Scholar
  25. 25.
    25. Niwa J, Ishigaki S, Hishikawa N, Yamamoto M, Doyu M, Murata S, Tanaka K, Taniguchi N, Sobue G: Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem 277: 36793–8, 2002CrossRefPubMedGoogle Scholar
  26. 26.
    26. Hyun DH, Lee M, Halliwell B, Jenner P: Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 86: 363–73, 2003CrossRefPubMedGoogle Scholar
  27. 27.
    27. Miyazaki K, Fujita T, Ozaki T, Kato C, Kurose Y, Sakamoto M, Kato S, Goto T, Itoyama Y, Aoki M, Nakagawara A: NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J Biol Chem 279: 11327–35, 2004CrossRefPubMedGoogle Scholar
  28. 28.
    28. Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR: Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36: 1007–19, 2002CrossRefPubMedGoogle Scholar
  29. 29.
    29. Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, Aitken A, Skoulakis EM, Orr HT, Botas J, Zoghbi HY: Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113: 457–68, 2003CrossRefPubMedGoogle Scholar
  30. 30.
    30. Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY, Clark HB, Orr HT: Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38: 375–87, 2003CrossRefPubMedGoogle Scholar
  31. 31.
    31. Subramaniam JR, Lyons WE, Liu J, Bartnikas TB, Rothstein J, Price DL, Cleveland DW, Gitlin JD, Wong PC: Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat Neurosci 5: 301–7, 2002CrossRefPubMedGoogle Scholar
  32. 32.
    32. Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, Jenkins NA, Borchelt DR: Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12: 2753–64, 2003CrossRefPubMedGoogle Scholar
  33. 33.
    33. Hayward LJ, Rodriguez JA, Kim JW, Tiwari A, Goto JJ, Cabelli DE, Valentine JS, Brown RH, Jr: Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 277: 15923–31, 2002CrossRefPubMedGoogle Scholar
  34. 34.
    34. Bence NF, Sampat RM, Kopito RR: Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–5, 2001CrossRefPubMedGoogle Scholar
  35. 35.
    35 Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY: Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24: 879–92, 1999CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Uma Krishnan
    • 1
  • Marjatta Son
    • 1
  • Bhagya Rajendran
    • 1
  • Jeffrey L Elliott
    • 1
  1. 1.Department of NeurologyUniversity of Texas, Southwestern Medical CenterDallasUSA

Personalised recommendations