Molecular and Cellular Biochemistry

, Volume 286, Issue 1–2, pp 161–170 | Cite as

Identification and characterization of recombinant and native rat myristoyl-CoA: protein N-myristoyltransferases

  • Vincent Rioux
  • Erwan Beauchamp
  • Frédérique Pedrono
  • Stéphanie Daval
  • Daniel Molle
  • Daniel Catheline
  • Philippe Legrand


Compared to other species that possess a single functional myristoyl-CoA: protein N-myristoyltransferase gene copy, human, mouse and cow possess 2 NMT genes, and more than 2 protein isoforms. In mammals, the contribution of each gene transcript to multiple protein isoform expression and enzyme activity remains unclear. In order to get new insight on their respective physiological role, we have cloned and characterized the two rat NMT cDNAs. Rat NMT1 and NMT2 cDNAs contain 1491 and 1590 nucleotides, respectively, with high identity with their mouse homologues. Polypeptide sequences exhibited 68.1% identity between NMT1 and 2. Recombinant rat NMT1 and 2 showed major immunoreactive forms at 66 and 50 kDa, although NMT2 is 33-amino acid longer than NMT1. Both proteins exhibited functional myristoyltransferase activity but NMT2 appeared to be 4-time less active than NMT1. Studies of native protein expression revealed that the level and sizes of NMT proteins greatly vary among rat tissues although NMT1 and 2 did not display tissue specific expression at the mRNA level. Altogether, these results suggest that NMT2 may contribute little to total NMT activity levels in vivo.


NMT N-terminal myristoylation myristic acid saturated fatty acid metabolism rat 



myristoyl-CoA: protein N-myristoyltransferase


human NMT


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI: Genetic and biochemicalstudies of protein N-myristoylation. Annu Rev Biochem 63: 869–914, 1994PubMedCrossRefGoogle Scholar
  2. 2.
    Casey PJ: Protein lipidation in cell signaling. Science 268: 221–225,1995PubMedCrossRefGoogle Scholar
  3. 3.
    Resh MD: Myristylation and palmitylation of SRC family members: the fatsof the matter. Cell 76: 411–413, 1999CrossRefGoogle Scholar
  4. 4.
    Maurer-Stroh S, Eisenhaber F: Myristoylation of viral and bacterialproteins. Trends Microbiol 12: 178–185, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Ozols J, Carr SA, Strittmatter P: Identification of the NH2-terminal blocking group of NADH cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain. J Biol Chem259: 13349–13354, 1984PubMedGoogle Scholar
  6. 6.
    Maurer-Stroh S, Gouda M, Novatchkova M, Schleiffer A, Schneider G, Sirota FL, Wildpaner M, Hayashi N, Eisenhaber F: MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryoticmyristoylated proteins. Genome Biology 5: R21 1–16, 2004Google Scholar
  7. 7.
    Boisson B, Giglione C, Meinnel T: Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote.J Biol Chem 278: 43418–43429, 2003PubMedCrossRefGoogle Scholar
  8. 8.
    Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI: Purification and characterization of yeast myristoyl-CoA:protein N-myristoyltransferase. Proc Natl Acad Sci USA 87: 2708–2712, 1987CrossRefGoogle Scholar
  9. 9.
    Duronio RJ, Towler DA, Heuckeroth RO, Gordon JI: Disruption of the yeast N-myristoyltransferase gene causes recessive lethality. Science 243:796–800, 1989PubMedCrossRefGoogle Scholar
  10. 10.
    Ntwasa M, Egerton M, Gay NJ: Sequence and expression of Drosophila myristoyl-CoA:protein N-myristoyltransferase: evidence for proteolyticprocessing and membrane localisation. J Cell Sci 110: 149–156, 1997PubMedGoogle Scholar
  11. 11.
    Qi Q, Rajala RVS, Anderson W, Jiang C, Rozwadowski K, Selvaraj G, Sharma R, Datla R: Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase fromArabidopsis thaliana. J Biol Chem 275: 9673–9683, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Dumonceaux T, Rajala RV, Sharma R, Selvaraj G, Datla R: Molecular characterization of a gene encoding N-myristoyltransferase (NMT) fromTriticum aestivum (bread wheat). Genome 47: 1036–1042, 2004PubMedCrossRefGoogle Scholar
  13. 13.
    Gunaratne RS, Sajid M, Ling IT, Tripathi R, Pachebat JA, Holder AA: Characterization of N-myristoyltransferase from Plasmodium falciparum.Biochem J 348: 459–463, 2000PubMedCrossRefGoogle Scholar
  14. 14.
    Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF: Myristoyl-CoA: protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 278:7206–7214, 2003PubMedCrossRefGoogle Scholar
  15. 15.
    Glover CJ, Goddard C, Felsted RL: N-myristoylation of p60 src. Identification of a myristoyl-CoA: glycylpeptide N-myristoyltransferase inrat tissues. Biochem J 250: 485–491, 1988PubMedGoogle Scholar
  16. 16.
    McIlhinney RAJ, Young K, Egerton M, Camble R, White A, Soloviev M: Characterization of human and rat brain myristoyl-CoA:protein N-myristoyltransferase: evidence for an alternative splice variant of theenzyme. Biochem J 333: 491–495, 1998PubMedGoogle Scholar
  17. 17.
    Giang DK, Cravatt BF: A second mammalian N-myristoyltransferase. J BiolChem 273: 6595–6598, 1998Google Scholar
  18. 18.
    Weston SA, Camble R, Colls J, Rosenbrock G, Taylor I, Egerton M, Tucker AD, Tunnicliffe A, Mistry A, Mancia F, de la Fortelle E, Irwin J, Bricogne G, Pauptit RA: Crystal structure of the anti-fungal targetN-myristoyltransferase. Nat Struct Biol 5: 213–221, 1998PubMedCrossRefGoogle Scholar
  19. 19.
    Bhatnagar RS, Futterer K, Farazi S, Korolev S, Murray CL, Jackson-Machelski E, Gokel GW, Gordon JI, Waksman G: Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrateanalogs. Nat Struct Biol 5: 1091–1097, 1998PubMedCrossRefGoogle Scholar
  20. 20.
    Rundle DR, Rajala RVS, Anderson RE: Characterization of type I and type II myristoyl-CoA: protein N-myristoyltransferase with the acyl-CoAs found onheterogeneously acylated retinal proteins. Exp Eye Res 75: 87–97, 2002PubMedCrossRefGoogle Scholar
  21. 21.
    Yang SH, Shrivastav A, Kosinski C, Sharma RK, Chen M-H, Berthiaume LG, Peters LL, Chuang P-T, Young SG, Bergo MO: N-myristoyltransferase 1 isessential in early mouse development. J Biol Chem 280: 18990–18995, 2005PubMedCrossRefGoogle Scholar
  22. 22.
    Ducker CE, Upson JJ, French KJ, Smith CD: Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, andapoptosis. Mol. Cancer Res 3: 463–476, 2005PubMedCrossRefGoogle Scholar
  23. 23.
    Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI: Myristoyl-CoA: protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substratespecificities. J Biol Chem 263: 1784–1790, 1988PubMedGoogle Scholar
  24. 24.
    Rioux V, Galat A, Jan G, Vinci F, D'Andréa S, Legrand P: Exogenous myristic acid acylates proteins in cultured rat hepatocytes. J Nutr Biochem13: 66–74, 2002PubMedCrossRefGoogle Scholar
  25. 25.
    Rioux V, Daval S, Guillou H, Jan S, Legrand P: Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for proteinacylation. Reprod Nutr Dev 43: 419–430, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Towler DA, Glaser L: Protein fatty acid acylation: enzymatic synthesisof an N-myristoylglycyl peptide. Proc Natl Acad Sci USA 83: 812–2816, 1986CrossRefGoogle Scholar
  27. 27.
    D'Andrea S, Guillou H, Jan S, Catheline D, Thibault J-N, Bouriel M, Rioux V, Legrand P: The same rat ´6-desaturase not only acts on 18- but also on 24-carbon fatty acids in very-long-chain polyunsaturated fatty acidbiosynthesis. Biochem J 364: 49–55, 2002PubMedGoogle Scholar
  28. 28.
    Bensadoun A, Weinstein D: Assay of proteins in the presence ofinterfering materials. Anal Biochem 70: 241–250, 1976PubMedCrossRefGoogle Scholar
  29. 29.
    Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M: A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes.J Cell Biol 135: 1501–1513, 1996PubMedCrossRefGoogle Scholar
  30. 30.
    Guillou H, D'Andréa S, Rioux V, Barnouin R, Dalaine S, Pedrono F, Jan S, Legrand P: Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat ´6-desaturase activity. JLipid Res 45: 32–40, 2004CrossRefGoogle Scholar
  31. 31.
    Duronio RJ, Reed SI, Gordon JI: Mutations of human myristoyl-CoA: protein N-myristoyltransferase cause temperature-sensitive myristic auxotrophy in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:4129–4133, 1992PubMedCrossRefGoogle Scholar
  32. 32.
    Glover CJ, Hartman KD, Felsted RL: Human N-myristoyltransferase amino-terminal domain involved in targeting the enzyme to the ribosomalsubcellular fraction. J Biol Chem 272: 28680–28689, 1997PubMedCrossRefGoogle Scholar
  33. 33.
    Raju RVS, Datla RSS, Sharma RK: Genomic organization of human myristoyl-CoA: protein N-myristoyltransferase. Biochem Biophys Res Commun257: 284–288, 1999PubMedCrossRefGoogle Scholar
  34. 34.
    Selvakumar P, Pasha MK, Ashakumary L, Dimmock JR, Sharma RK: Myristoyl-CoA: protein N-myristoyltransferase: a novel molecular approachfor cancer therapy. Int J Mol Med 10: 493–500, 2002PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Vincent Rioux
    • 1
  • Erwan Beauchamp
    • 1
  • Frédérique Pedrono
    • 1
  • Stéphanie Daval
    • 1
  • Daniel Molle
    • 2
  • Daniel Catheline
    • 1
  • Philippe Legrand
    • 1
    • 3
  1. 1.Laboratoire de BiochimieINRA-AgrocampusRennesFrance
  2. 2.UMR STLOINRA-AgrocampusRennesFrance
  3. 3.Laboratoire de BiochimieINRA-AgrocampusRENNES CedexFRANCE

Personalised recommendations