Fip1 — an Essential Component of the Saccharomyces Cerevisiae Polyadenylation Machinery is Phosophorylated by Protein Kinase CK2

  • Rafał Zieliński
  • Ulf Hellman
  • Konrad Kubiński
  • Ryszard Szyszka


Since Fip1 is phosphoprotein we investigated whether it is a substrate for protein kinase CK2. According to the amino acid sequence Fip1 harbours twenty putative CK2 phosphorylation sites. Here we have report characterization of Fip1 as a substrate for both forms of CK2. Fip1 serves as a substrate for both the recombinant CK2α ′ (Km 1.28 μM) and holoenzyme (Km 1.4 μM) but not for CK1. By MALDI-MS we identified the two serine residues at positions 73 and 77 as the possible in vitro phosphorylation sites. These data may help to elucidate the role of Fip1 in the mRNA 3'-OH polyadenylation process and the involvement of CK2 mediated phosphorylation in regulation of interactions and activity members of cleavage/polyadenylation factor (CPF) complex.

Key words

yeast protein kinase CK2 polyadenylation cleavage/polyadenylation factor complex Fip1 mass spectrometry 


  1. 1.
    Pinna LA: Protein kinase CK2: a challenge to canons. J Cell Sci 115: 3873–3878, 2002PubMedCrossRefGoogle Scholar
  2. 2.
    Olsten MEK, Litchfield DW: Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 82: 681–693, 2005CrossRefGoogle Scholar
  3. 3.
    Litchfield DW: Protein kinase: structure, regulation and role in cellular decisions of life and deach. Biochem J 369: 1–15, 2003PubMedCrossRefGoogle Scholar
  4. 4.
    Glover CVC: On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucl Acid Res Mol Biol 59: 95–133, 1998CrossRefGoogle Scholar
  5. 5.
    Meggio F, Pinna LA: One-thousand-and-one substrates of protein kinase CK2, FASEB J 17: 349–368, 2003PubMedCrossRefGoogle Scholar
  6. 6.
    Guerra B, Issinger O-G: Protein kinase CK2 and its role in nuclear proliferation, development and pathology. Electrophoresis 20: 391–408, 1999PubMedCrossRefGoogle Scholar
  7. 7.
    Tuteja R, Tuteja N: Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol 33: 407–436, 1998PubMedCrossRefGoogle Scholar
  8. 8.
    Seeber S, Issinger O-G, Holm T, Kristensen LP, Guerra B: Validation of protein kinase CK2 as oncological target. Apoptosis 10: 875–885, 2005PubMedCrossRefGoogle Scholar
  9. 9.
    Ahmed K, Gerber DA, Cochet C: Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12: 226–230, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    Unger GM, Davis AT, Slaton JW, Ahmed K: Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4: 77–84, 2004PubMedCrossRefGoogle Scholar
  11. 11.
    Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC: Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20: 3247–3257, 2001PubMedCrossRefGoogle Scholar
  12. 12.
    Faust RA, Gapany M, Tristani P, Davis A, Adams GL, Ahmed K: Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett 101: 31–35, 1996PubMedCrossRefGoogle Scholar
  13. 13.
    Rossi R, Villa A, Negri C, Scovassi I, Ciarocchi G, Biamonti G, Montecucco A: The replication factory targeting sequence/PCNA-binding site is required in G(1) to control the phosphorylation status of DNA ligase I. EMBO J 18: 5745–5754, 1999PubMedCrossRefGoogle Scholar
  14. 14.
    Kowalska-Loth B, Girstun A, Darlacz R, Staroń K: Activation of human topoisomerase I by protein kinase CK2. Mol Biol Rep 30: 107–111, 2003PubMedCrossRefGoogle Scholar
  15. 15.
    Escargueil AE, Plisov SY, Filhol O, Cohet C, Larsen AK: Mitotic phosphorylation of DNA topoisomerase II alpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem 275: 34710–34718, 2000PubMedCrossRefGoogle Scholar
  16. 16.
    Pancetti F, Bosser R, Krehan A, Pyerin W, Itarte E, Bachs O: Heterogeneous nuclear ribonucleoprotein A2 interacts with protein kinase CK2. Biochem Biophys Res Commun 260: 17–22, 1999PubMedCrossRefGoogle Scholar
  17. 17.
    Schultz MA: DNA damage regulation of the RNA components of the translational apparatus: new biology and mechanisms. IUBMB Life 55: 243–247, 2003PubMedCrossRefGoogle Scholar
  18. 18.
    Maiti T, Bondyopadhyay A, Maitra U: Casein kinase II phosphorylates translation initiation factor 5 (eIF5) in Saccharomyces cerevisiae. Yeast 20: 97–108, 2003PubMedCrossRefGoogle Scholar
  19. 19.
    Hall TM: Poly(A) tail synthesis and regulation: recent structural insights. Curr Opin Struct Biol 12: 82–88, 2002PubMedCrossRefGoogle Scholar
  20. 20.
    Keller W, Minvielle-Sebastia L: A comparison of mammalian and yeast pre-mRNA 3'-end processing. Curr Opin Cell Biol 9: 329–336, 1997PubMedCrossRefGoogle Scholar
  21. 21.
    Gross S, Moore CL: Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc Natl Acad Sci U S A 98: 6080–6085, 2001PubMedCrossRefGoogle Scholar
  22. 22.
    Helmling S, Zhelkowsky A, Moore CL: Fip1 regulates the activity of Poly(A) polymerase through multiple interactions. Mol Cell Biol 21: 2026–2037, 2001PubMedCrossRefGoogle Scholar
  23. 23.
    Szyszka R, Kudlicki W, Grankowski N, Gasior E: A minor species of a type I casein kinase from yeast phosphorylating threonine residues of protein substrate. Biochim Biophys Acta 838: 171–174, 1985PubMedGoogle Scholar
  24. 24.
    Szyszka R, Łopaczyński W, Gałasiński W, Grankowski N, Gasior E: Further studies on the quaternary structure of yeast casein kinase II. Acta Biochim Polon 23: 39–46, 1986Google Scholar
  25. 25.
    Schaerer-Brodbeck C, Riezman H: Genetic and biochemical interactions between the Arp2/3 complex, Cmd1p, casein kinase II, and Tub4p in yeast. FEMS Yeast Research 4: 37–49, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Hellman U: Sample preparation by SDS/PAGE and in-gel digestion. EXS 88: 43–54, 2000PubMedGoogle Scholar
  27. 27.
    Zhang C, Vilk G, Canton DA, Litchfield DW: Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21: 3754–3764, 2002PubMedCrossRefGoogle Scholar
  28. 28.
    Heriche JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM,Goldberg Y: Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 276: 952–955, 1997PubMedCrossRefGoogle Scholar
  29. 29.
    Meggio F, Marin O, Pinna LA: Substrate specificity of protein kinase CK2. Cell Mol Biol Res 40: 401–409, 1994PubMedGoogle Scholar
  30. 30.
    He X, Moore C: Regulation of yeast 3′ end processing by phosphorylation. Molec Cell 19: 619–629, 2005PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Rafał Zieliński
    • 1
  • Ulf Hellman
    • 2
  • Konrad Kubiński
    • 1
  • Ryszard Szyszka
    • 1
  1. 1.Department of Molecular Biology, Environmental Protection InstituteCatholic University of LublinLublinPoland
  2. 2.Ludwig Institute for Cancer ResearchUppsalaSweden

Personalised recommendations