Molecular and Cellular Biochemistry

, Volume 286, Issue 1–2, pp 67–76 | Cite as

Xaf1 can cooperate with TNFα in the induction of apoptosis, independently of interaction with XIAP

  • Yan Xia
  • Rachel Novak
  • Jennifer Lewis
  • Colin S. Duckett
  • Andrew C. Phillips


XIAP-associated factor 1 (Xaf1) binds XIAP and re-localizes it to the nucleus, thus inhibiting XIAP activity and enhancing apoptosis [1]. Xaf1 expression is reduced or absent in tumor samples and cell lines suggesting it may function as a tumor suppressor [2–5]. To further study Xaf1 function we generated Xaf1 inducible cells in the osteosarcoma cell line Saos-2. Despite Xaf1 inducing apoptosis that is dramatically enhanced by TNFα we find no evidence for an interaction between Xaf1 and XIAP. Furthermore, Xaf1 expression sensitized XIAP−/− fibroblasts to TNFα, demonstrating the existence of a novel mechanism of Xaf1 induced apoptosis distinct from antagonizing XIAP. Xaf1 expression promotes cytochrome c release that cannot be blocked by inhibition of caspase activity. This implicates a role for the mitochondrial apoptotic pathway, consistent with the ability of Bcl2 to block Xaf1 induced apoptosis. The data indicate that in Saos2 cells Xaf1 activates the mitochondrial apoptotic pathway to facilitate cytochrome c release, thus amplifying apoptotic signals from death receptors.


Xaf1 XIAP TNFα cytochrome c caspase Bcl2 tumor suppressor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG: Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nature Cell Biology 3: 128–133, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Ng KC, Campos EI, Martinka M, Li G: XAF1 expression is significantly reduced in human melanoma. J Invest Dermatol 123: 1127–1134, 2004PubMedCrossRefGoogle Scholar
  3. 3.
    Ma TL, Ni PH, Zhong J, Tan JH, Qiao MM, Jiang SH: Low expression of XIAP-associated factor 1 in human colorectal cancers. Chin J Dig Dis 6: 10–14, 2005PubMedCrossRefGoogle Scholar
  4. 4.
    Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG: Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 70: 113–122, 2000PubMedCrossRefGoogle Scholar
  5. 5.
    Byun DS, Cho K, Ryu BK, Lee MG, Kang MJ, Kim HR, Chi SG: Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res 63: 7068–7075, 2003PubMedGoogle Scholar
  6. 6.
    Brunner T, Mueller C. Apoptosis in disease: about shortage and excess. Essays Biochem 39: 119–130, 2003PubMedGoogle Scholar
  7. 7.
    Thornberry NA, Lazebnik Y: Caspases: enemies within. Science 281: 1312–1316, 1998PubMedCrossRefGoogle Scholar
  8. 8.
    Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ: Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144: 281–292, 1999PubMedCrossRefGoogle Scholar
  9. 9.
    Ashkenazi A, Dixit VM: Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11: 255–260, 1999PubMedCrossRefGoogle Scholar
  10. 10.
    Brenner C, Kroemer G: Apoptosis. Mitochondria–the death signal integrators. Science 289: 1150–1151, 2000PubMedCrossRefGoogle Scholar
  11. 11.
    Sharpe JC, Arnoult D, Youle RJ: Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644: 107–113, 2004PubMedCrossRefGoogle Scholar
  12. 12.
    Green DR, Reed JC: Mitochondria and apoptosis. Science 281: 1309–1312, 1998PubMedCrossRefGoogle Scholar
  13. 13.
    Salvesen GS, Duckett CS: IAP proteins: Blocking the road to death's door. Nature Reviews Molecular Cell Biology 3: 401–410, 2002PubMedCrossRefGoogle Scholar
  14. 14.
    Deveraux QL, Takahashi R, Salvesen GS, Reed JC: X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388: 300–304, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R: X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and-7 in distinct modes. Journal of Biological Chemistry 276: 27058–27063, 2001PubMedCrossRefGoogle Scholar
  16. 16.
    Du CY, Fang M, Li YC, Li L, Wang XD: Smac, a mitochondrial protein that promotes cytochrome c- dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42, 2000PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R: A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Molecular Cell 8: 613–621, 2001PubMedCrossRefGoogle Scholar
  18. 18.
    Leaman DW, Chawla-Sarkar M., Vyas K, Reheman M, Tamai K, Toji S, Borden EC: Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 277: 28504–28511, 2002PubMedCrossRefGoogle Scholar
  19. 19.
    Bates S, Ryan KM, Phillips AC, Vousden KH: Cell cycle arrest and DNA endoreduplication following p21(Waf1/Cip1) expression. Oncogene 17: 1691–1703, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Phillips AC, Bates S, Ryan KM, Helin K, Vousden KH: Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes & Development 11: 1853–1863, 1997CrossRefGoogle Scholar
  21. 21.
    Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH: The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. Embo J 16: 3145–3157, 1997PubMedCrossRefGoogle Scholar
  22. 22.
    Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH: E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Molecular Cell 4: 771–781, 1999PubMedCrossRefGoogle Scholar
  23. 23.
    Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson, CB: Characterization of XIAP-deficient mice. Molecular and Cellular Biology 21: 3604–3608, 2001PubMedCrossRefGoogle Scholar
  24. 24.
    Green DR: Apoptotic pathways: the roads to ruin. Cell 94: 695–698, 1998PubMedCrossRefGoogle Scholar
  25. 25.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490, 1998PubMedCrossRefGoogle Scholar
  26. 26.
    Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501, 1998PubMedCrossRefGoogle Scholar
  27. 27.
    Manji GA, Hozak RR, LaCount DJ, Friesen PD: Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor P35 to prevent programmed cell death. Journal of Virology 71: 4509–4516, 1997PubMedGoogle Scholar
  28. 28.
    Nakano K, Vousden KH: PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell 7: 683–694, 2001PubMedCrossRefGoogle Scholar
  29. 29.
    Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B: PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7: 673–682, 2001PubMedCrossRefGoogle Scholar
  30. 30.
    Waterhouse NJ, Trapani J: A. A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ 10: 853–855, 2003PubMedCrossRefGoogle Scholar
  31. 31.
    Scoltock AB, Cidlowski JA: Activation of intrinsic and extrinsic pathways in apoptotic signaling during UV-C-induced death of Jurkat cells: the role of caspase inhibition. Exp Cell Res 297: 212–223, 2004PubMedCrossRefGoogle Scholar
  32. 32.
    Guzman E, Langowski JL, Owen-Schaub L: Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis 8: 315–325, 2003PubMedCrossRefGoogle Scholar
  33. 33.
    Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW: Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352, 1998PubMedCrossRefGoogle Scholar
  34. 34.
    Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T: Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140: 171–182, 1998PubMedCrossRefGoogle Scholar
  35. 35.
    Sheikh MS, Antinore MJ, Huang Y, Fornace AJ, Jr: Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumor necrosis factor receptor 1. Oncogene 17: 2555–2563, 1998PubMedCrossRefGoogle Scholar
  36. 36.
    Wilkinson JC, Cepero E, Boise LH, Duckett CS: Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol Cell Biol 24: 7003–7014, 2004PubMedCrossRefGoogle Scholar
  37. 37.
    Sauerwald TM, Betenbaugh MJ, Oyler GA: Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng 77: 704–716, 2002PubMedCrossRefGoogle Scholar
  38. 38.
    Galvan V, Kurakin AV, Bredesen DE. Interaction of checkpoint kinase 1 and the X-linked inhibitor of apoptosis during mitosis. FEBS Lett 558: 57–62, 2004PubMedCrossRefGoogle Scholar
  39. 39.
    Nowak D, Boehrer S, Brieger A, Kim SZ, Schaaf S, Hoelzer D, Mitrou PS, Weidmann E, Chow KU: Upon drug-induced apoptosis in lymphoma cells X-linked inhibitor of apoptosis (XIAP) translocates from the cytosol to the nucleus. Leuk Lymphoma 45: 1429–1436, 2004PubMedCrossRefGoogle Scholar
  40. 40.
    Siegelin M, Touzani O, Toutain J, Liston P, Rami A: Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiol Dis, 2005Google Scholar
  41. 41.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N: Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058, 2000PubMedCrossRefGoogle Scholar
  42. 42.
    Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, MacLean KH, Han J, Chittenden T, Ihle JN, McKinnon PJ, Cleveland JL, Zambetti GP: Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328, 2003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yan Xia
    • 1
  • Rachel Novak
    • 1
  • Jennifer Lewis
    • 2
  • Colin S. Duckett
    • 2
  • Andrew C. Phillips
    • 1
  1. 1.Medical College of GeorgiaInstitute of Molecular Medicine and GeneticsAugustaUSA
  2. 2.University of Michigan, Departments of Pathology and Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations