Skip to main content
Log in

Different antioxidants status, total antioxidant power and free radicals in essential hypertension

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypertension is a multi-factorial process, prevalent in developed as well as in developing countries. Different antioxidants and free radicals play an important role in cardiovascular system. In present study, total antioxidant power in terms of FRAP (ferric reducing activity of plasma), free radicals and different antioxidants have been studied in essential hypertensives (n = 50) and normal subjects (n = 50). Levels of total cholesterol, low-density lipids-cholesterol, malonialdehyde, very low-density lipids (VLDL), uric acid, plasma homocysteine and low-density lipids (LDL), were significantly higher in hypertensives as compared to normotensive. HDL-cholesterol, SOD, GPx, reduced glutahione, total glutathione, oxidized glutathione, total thiols, protein thiols, non protein thiols, RNI, total antioxidant power, vitamin A, ascorbic acid and glutahione-S-transferase (GST) were decreased significantly in normotensive. We observed significantly low nitric oxide levels in hypertensive patients. No correlation was observed between severity of disease and plasma nitric oxide levels. There was a significant decrease in plasma FRAP value in essential hypertensives as compared to normotensive controls, which showed a negative correlation with diastolic blood pressure. In conclusion, our study revealed that there was a consistent significant difference between essential hypertensives versus controls with respect to most of the parameters. These complex changes are consistent in the view that essential hypertension is associated with an abnormal level of antioxidant status compared to normal response to oxidative stress or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khullar M, Sehrawat BS, Kashyap MK: Genes and hypertension. PGIMER Bull 35: 40–46, 2001

    Google Scholar 

  2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ: National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The JNC 7 report. JAMA 289: 2560–2572, 2003

    PubMed  Google Scholar 

  3. Krousel-Wood MA, Muntner P, He J, Whelton PK: Primary prevention of essential hypertension. Med Clin North Am 88: 223–238, 2004

    Article  PubMed  Google Scholar 

  4. Mahmud A, Feely J: Arterial stiffness and the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst 5: 102–108, 2004

    PubMed  Google Scholar 

  5. Puig JG, Ruilope LM: Uric acid as a cardiovascular risk factor in arterial hypertension. J Hypertens 17: 869–872, 1999

    Article  PubMed  Google Scholar 

  6. Culleton BF, Larson MG, Kannel WB, Levy D: Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131: 7–13, 1999

    PubMed  Google Scholar 

  7. Fang J, Alderman MH: Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National health and nutrition examination survey. JAMA 283: 2404–2410, 2000

    Article  PubMed  Google Scholar 

  8. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P: Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 36: 1072–1078, 2000

    PubMed  Google Scholar 

  9. Larson AW, Strong CG: Initial Assessment of the Patient With hypertension. Mayo Clin Proc 64: 1533–1542, 1989

    PubMed  Google Scholar 

  10. Nunez BD, Frohlich ED, Garavaglia GE, Schmieder RE, Nunez MM: Serum uric acid in Renovascular hypertension: Reduction following surgical correction. Am J Med Sci 294: 419–422, 1987

    PubMed  Google Scholar 

  11. McCarron DA: Diet and blood pressure-the paradigm shift. Science 281: 933–934, 1998

    Article  PubMed  Google Scholar 

  12. Phillips K, Holm K, Wu AC: Contemporary table salt practices and blood pressure. Am J Public Health 75: 405–406, 1985

    PubMed  Google Scholar 

  13. McCarron DA: Role of adequate dietary calcium intake in the prevention and management of salt-sensitive hypertension. Am J Clin Nutr 65: 712S–716S, 1997

    PubMed  Google Scholar 

  14. Denton D, Weisinger R, Mundy NI, Wickings EJ, Dixson A, Moisson P, Pingard AM, Shade R, Carey D, Ardaillou R, Paillard F, Chapman J, Thillet J, Michel JB: The effect of increase of salt intake on blood pressure of chimpanzees. Nature Med 1: 1009–1017, 1995

    Article  PubMed  Google Scholar 

  15. Zoccali C, Mallamaci F, Cuzzola F, Leonardis D: Reproducibility of the response to short-term low salt intake in essential hypertension. J Hypertens 14: 1455–1459, 1996

    PubMed  Google Scholar 

  16. Gerdts E, Lund Johansen P, Omvik P: Reproducibility of salt sensitivity testing using a dietary approach in essential hypertension. J Hum Hypertens 13: 375–384, 1999

    Article  PubMed  Google Scholar 

  17. Mattes RD, Falkner B: Salt-sensitivity classification in normotensive adults. Clin Sci (London) 96: 449–459, 1999

    Google Scholar 

  18. Erdos EG, Skidgel RA. The angiotensin I-converting enzyme. Lab Invest 56: 345–348, 1987

    PubMed  Google Scholar 

  19. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86: 1343–1346, 1990

    PubMed  Google Scholar 

  20. Morris BJ, Zee RY, Schrader AP: Different frequencies of angiotensin-converting enzyme genotypes in older hypertensive individuals. J Clin Invest 94: 1085–1089, 1994

    PubMed  Google Scholar 

  21. Harrap SB, Davidson HR, Connor JM, Soubrier F, Corvol P, Fraser R, Foy CJ, Watt GC: The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension 21: 455–460, 1993

    PubMed  Google Scholar 

  22. Krizanova O, Obdrzalkova D, Polakova H, Jelok I, Hudecova S: Molecular variants of the renin-angiotensin system components in the Slovak population. Physiol Res 46: 357–361, 1997

    PubMed  Google Scholar 

  23. Jeunemaitre X, Lifton RP, Hunt SC, Williams RR, Lalouel JM: Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1: 72–75, 1992

    Article  PubMed  Google Scholar 

  24. Morris BJ: Chromosome 17q23: A locus for cardiovascular disease. Clin Exp Pharmacol Physiol 20: 279–282, 1993

    PubMed  Google Scholar 

  25. Duru K, Farrow S, Wang JM, Lockette W, Kurtz T: Frequency of a deletion polymorphism in the gene for angiotensin converting enzyme is increased in African–Americans with hypertension. Am J Hypertens 7: 759–762, 1994

    PubMed  Google Scholar 

  26. Mastana S, Nunn J: Angiotensin-converting enzyme deletion polymorphism is associated with hypertension in a Sikh population. Hum Hered 47: 250–253, 1997

    PubMed  Google Scholar 

  27. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, Myers RH, Levy D: Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart. Circulation 97: 1766–1772, 1998

    PubMed  Google Scholar 

  28. Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E: Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 97: 1773–1779, 1998

    PubMed  Google Scholar 

  29. Higaki J, Baba S, Katsuya T, Sato N, Ishikawa K, Mannami T, Ogata J, Ogihara T: Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the suita study. Circulation 101: 2060–2065, 2000

    PubMed  Google Scholar 

  30. Khullar M, Kashyap MK, Kumar P, Kumari S, Jain S: Association of angiotensin converting enzyme gene polymorphism with essential hypertension in Black Asian Indian. International Society of Hypertension, Washington. DC (USA), pp. 55, 2000

  31. Chandha SL, Radha Krishnan S, Ramachandran K, Kaul V, Gopinath N: Prevalence, awareness and treatment status of hypertension in urban population of Delhi. Indian J Med Res 92: 233–240, 1990

    PubMed  Google Scholar 

  32. Makazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inow M: Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 88: 10045–10048, 1991

    PubMed  Google Scholar 

  33. Romero-Alvira D, Rochi E: High blood pressure, oxygen radicals and antioxidants: Etiological relationship. Med Hypothesis 46: 414–420, 1996

    Article  Google Scholar 

  34. Guerra E, Alberti S: Molecular prognostic indicators for breast cancer. Tumori 87: S23–S25, 2001

    Google Scholar 

  35. Diehl AM: Effect of ethanol on tumor necrosis factor signaling during liver regeneration. Clin Biochem 32: 571–578, 1999

    Article  PubMed  Google Scholar 

  36. Das U: A radical approach to cancer. Med Sci Monit 8: RA79–RA92, 2002

    PubMed  Google Scholar 

  37. Singhal PK, Khaper N, Palace V, Kumar D: The role of oxidative stress in genesis of heart disease. Cardiovas Res 40: 426–432, 1998

    Article  Google Scholar 

  38. De Bruyn VH, Nuns DW, Cappelli-Biggazzi M, Dole WR, Lamping KG: Effect of acute hypertension in the coronary vessels. J Hypertens 12: 163–172, 1994

    PubMed  Google Scholar 

  39. Dhalla NS, Temash RM, Netticadam T: Oxidative stress and cardiovascular diseases. J Hypertens 18: 655–673, 2000

    Article  PubMed  Google Scholar 

  40. Srinivas K, Bhaskar MV, Kumari RA, Nagraj K, Reddy KK: Anti-oxidants, lipids per-oxidation, lipoprotein in primary hypertension. Indian Heart J 52: 285–288, 2000

    PubMed  Google Scholar 

  41. Friedman AN, Rosenberg IH, Selhub J, Levey AS, Bostom AG: Hyperhomocysteinemia in renal transplant recipients. Am J Transplant 2: 308–313, 2002

    Article  PubMed  Google Scholar 

  42. Guilliams TG: Homocysteine – a risk factor for vascular diseases: Guidelines for the clinical practice. J Am Nutraceutical Assoc 7: 11–24, 2004

    Google Scholar 

  43. Brzosko S, Mysliwiec M, Donati MB, Iacoviello L: Homocysteinemia in patients with type 1 diabetes in relation to renal function. Diabetes Care 24: 2158, 2001

    Google Scholar 

  44. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J: Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing oxides of nitrogen. J Clin Invest 91: 308–318, 1993

    PubMed  Google Scholar 

  45. Selhub J, Jacques PF, Bostom AG, D’Agostino RB, Wilson PW, Belanger AJ, O’Leary DH, Wolf PA, Schaefer EJ, Rosenberg IH: Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 332: 286–291, 1995

    Article  PubMed  Google Scholar 

  46. Perry J, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG: Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346:1395–1398, 1995

    Article  PubMed  Google Scholar 

  47. Nygård O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE, Ueland PM, Kvåle G: Total homocysteine and cardiovascular risk profile. JAMA 274: 1526–1533, 1995

    Article  PubMed  Google Scholar 

  48. Joint National Committee on detection evaluation and treatment of high blood pressure: The sixth report of the Joint national committee in detection, evaluation and treatment of high blood pressure. Arch Intern 157: 2413–2446, 1997

    Google Scholar 

  49. Kh R, Khullar M, Kashyap M, Pandhi P, Uppal R: Effect of oral magnesium supplementation on blood pressure, platelet aggregation and calcium handling in deoxycorticosterone acetate induced hypertension in rats. J Hypertens 18: 919–926, 2000

    Article  PubMed  Google Scholar 

  50. Stocks J, Dormandy TL: The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Hematol 20: 95–111, 1971

    Google Scholar 

  51. Natelson S: Techniques of Clinical Chemistry, 3rd edn. Samuel Natelson, Charles C Thomas, Springfield, IL. 10521: 162–165, 1971

    Google Scholar 

  52. Paglia J, Valantine K: Assay of glutathione peroxidase. Arch Biochem Biophys 210: 505–516, 1969

    Google Scholar 

  53. Tietz F: Enzymatic methods for quantitative determination of nanogram amount of total and oxidized glutathione. Application to mammalian blood and other tissues. Anal Biochem 27: 502–522, 1969

    Article  PubMed  Google Scholar 

  54. Beutler JB, Keln M, Pryor WA: Estimation of reduced and oxidized glutathione. Arch Biochem Biophys 8: 281–291, 1963

    Google Scholar 

  55. Hatrig HJ, Habig WH, Pabst MJ: Estimation of glutathione-S-transferase. J Bio Chem 249: 7130–7139, 1974

    Google Scholar 

  56. Sedlak J, Lindsay R: Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25: 192–205, 1968

    Article  PubMed  Google Scholar 

  57. Kono J, Truscott TG, Martwell K: Superoxide dismutase was estimated in human being. Am Heart J 22: 607–610, 1978

    Google Scholar 

  58. Beers B, Sizer S: Estimation of catalase. J Biochem 1995: 133–140, 1952

    Google Scholar 

  59. Benzie IF, Strain JJ: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239: 70–76, 1996

    Article  PubMed  Google Scholar 

  60. Rose BD: Renal Circulation and Glomerular Filtration Rate: Clinical Physiology of Acid-Base and Electrolyte Disorders. McGraw Hill, New York, 1984, Chapter 3

    Google Scholar 

  61. Refsum H, Ueland M, Svardal MA: Fully automated fluorescence assay for determining total Homocysteine in plasma. Clin Chem 35: 1921–1927, 1989

    PubMed  Google Scholar 

  62. Russo C, Olivieri O, Girelli D, Faccini G, Lambardi MLZ, Corrocher R: Anti-oxidants status and lipid peroxidation in patients with essential hypertension. J Hypertens 16: 1267–1271, 1998

    Article  PubMed  Google Scholar 

  63. Jain S, Ram H, Kumari S, Khullar M: Plasma homocysteine levels in Indian patients with essential hypertension and their siblings. Ren Fail 25: 195–201, 2003

    Article  PubMed  Google Scholar 

  64. Guttormsen AB, Ueland PM, Svarstad E, Refsum H: Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure. Kidney Int 52: 495–502, 1997

    PubMed  Google Scholar 

  65. Ishikawa T, Zimmer M and Sies H. Energy linked cardiac transport system for glutathione disulphide. FEBS Lett, 200: 128–132, 1989

    Article  Google Scholar 

  66. Jialal I, Vega GK, Grundy SM: Physiological levels of ascorbate inhibit oxidative modification of LDL. Atherosclerosis 82: 185–191, 1998

    Google Scholar 

  67. Salonen JT, Salonen R: Blood pressure related with directly fats and anti-oxidants. Am J Clin Nutr 48: 1226–1232, 1998

    Google Scholar 

  68. Husain K: Exercise conditioning attenuates the hypertensive effects of nitric oxide synthase inhibitor in rat. Mol Cell Biochem 231: 129–137, 2002

    Article  PubMed  Google Scholar 

  69. Viazzi F, Parodi D, Leoncini G, Parodi A, Falqui V, Ratto E, Vettoretti S, Bezante GP, Del Sette M, Deferrari G, Pontremoli R: Serum uric acid and target organ damage in primary hypertension. Hypertension 45: 1–6, 2005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Kashyap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashyap, M.K., Yadav, V., Sherawat, B.S. et al. Different antioxidants status, total antioxidant power and free radicals in essential hypertension. Mol Cell Biochem 277, 89–99 (2005). https://doi.org/10.1007/s11010-005-5424-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-5424-7

Keywords

Navigation