Advertisement

Molecular and Cellular Biochemistry

, Volume 276, Issue 1–2, pp 183–192 | Cite as

Tankyrase-1 overexpression reduces genotoxin-induced cell death by inhibiting PARP1

  • Tsung-Yin J. Yeh
  • Juan I. Sbodio
  • M. T. Audrey Nguyen
  • Tobias N. Meyer
  • Ray M. Lee
  • Nai-Wen ChiEmail author
Article

Abstract

Poly(ADP-ribose) polymerases or PARPs are a family of NAD+-dependent enzymes that modify themselves and other substrate proteins with ADP-ribose polymers. The founding member PARP1 is localized predominantly in the nucleus and is activated by binding to DNA lesions. Excessive PARP1 activation following genotoxin treatment causes NAD+ depletion and cell death, whereas pharmacological PARP1 inhibition protects cells from genotoxicity. This study investigates whether cellular viability and NAD+ metabolism are regulated by tankyrase-1, a PARP member localized predominantly in the cytosol. Using a tetracycline-sensitive promoter to regulate tankyrase-1 expression in Madin–Darby canine kidney (MDCK) cells, we found that a 40-fold induction of tankyrase-1 (from 1500 to 60,000 copies per cell) lowers steady-state NAD+ levels but does not affect basal cellular viability. Moreover, the induction confers protection against the oxidative agent H2O2 and the alkylating agent MNNG, genotoxins that kill cells by activating PARP1. The cytoprotective effect of tankyrase-1 is not due to enhanced scavenging of oxidants or altered expression of Mcl-1, an anti-apoptotic molecule previously shown to be down-regulated by tankyrase-1 in CHO cells. Instead, tankyrase-1 appears to protect cells by preventing genotoxins from activating PARP1-mediated reactions such as PARP1 automodification and NAD+ consumption. Our findings therefore indicate a cytoprotective function of tankyrase-1 mediated through altered NAD+ homeostasis and inhibition of PARP1 function.

Keywords

NAD+ tankyrase PARP1 genotoxins oxidative stress cell death 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ame JC, Spenlehauer C, de Murcia G: The PARP superfamily. Bioessays 26: 882–893, 2004CrossRefPubMedGoogle Scholar
  2. 2.
    D’Amours D, Desnoyers S, D’Silva I, Poirier GG: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342: 249–268, 1999CrossRefPubMedGoogle Scholar
  3. 3.
    Simonin F, Hofferer L, Panzeter PL, Muller S, de Murcia G, Althaus FR: The carboxyl-terminal domain of human poly(ADP-ribose) polymerase. Overproduction in Escherichia coli, large scale purification, and characterization. J Biol Chem 268: 13454–13461, 1993PubMedGoogle Scholar
  4. 4.
    Shall S, de Murcia G: Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 460: 1–15, 2000PubMedGoogle Scholar
  5. 5.
    Davidovic L, Vodenicharov M, Affar EB, Poirier GG: Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268: 7–13, 2001CrossRefPubMedGoogle Scholar
  6. 6.
    Scovassi AI, Poirier GG: Poly(ADP-ribosylation) and apoptosis. Mol Cell Biochem 199: 125–137, 1999CrossRefPubMedGoogle Scholar
  7. 7.
    Sims JL, Berger SJ, Berger NA: Poly(ADP-ribose) Polymerase inhibitors preserve nicotinamide adenine dinucleotide and adenosine 5′-triphosphate pools in DNA-damaged cells: Mechanism of stimulation of unscheduled DNA synthesis. Biochemistry 22: 5188–5194, 1983CrossRefPubMedGoogle Scholar
  8. 8.
    Szabo C, Dawson VL: Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19: 287–298, 1998CrossRefPubMedGoogle Scholar
  9. 9.
    Burkle A: Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 23: 795–806, 2001CrossRefPubMedGoogle Scholar
  10. 10.
    Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446, 1999PubMedGoogle Scholar
  11. 11.
    Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL: Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259–263, 2002CrossRefPubMedGoogle Scholar
  12. 12.
    Chen M, Zsengeller Z, Xiao CY, Szabo C: Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly(ADP-ribose) polymerase-1. Cardiovasc Res 63: 682–688, 2004CrossRefPubMedGoogle Scholar
  13. 13.
    Alano CC, Ying W, Swanson RA: Poly(ADP-ribose) polymerase-1 mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 2004.Google Scholar
  14. 14.
    Rippmann JF, Damm K, Schnapp A: Functional characterization of the poly(ADP-ribose) polymerase activity of tankyrase 1, a potential regulator of telomere length. J Mol Biol 323: 217–224, 2002CrossRefPubMedGoogle Scholar
  15. 15.
    Rippmann JF, Damm K, Schnapp A: Erratum to Ref. 14. J Mol Biol 325: 1107, 2003CrossRefGoogle Scholar
  16. 16.
    Sbodio JI, Lodish HF, Chi NW: Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochem J 361: 451–459, 2002CrossRefPubMedGoogle Scholar
  17. 17.
    Chi NW, Lodish HF: Tankyrase Is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J~Biol Chem 275: 38437–38444, 2000PubMedGoogle Scholar
  18. 18.
    Smith S, Giriat I, Schmitt A, de Lange T: Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484–1487, 1998CrossRefPubMedGoogle Scholar
  19. 19.
    Smith S, de Lange T: Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci 112: 3649–3656, 1999PubMedGoogle Scholar
  20. 20.
    De Rycker M, Venkatesan RN, Wei C, Price CM: Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization. Biochem J 372: 87–96, 2003CrossRefPubMedGoogle Scholar
  21. 21.
    Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY: Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276: 48623–48626, 2001CrossRefPubMedGoogle Scholar
  22. 22.
    Seimiya H, Smith S: The Telomeric Poly(ADP-ribose) Polymerase, Tankyrase 1, Contains Multiple Binding Sites for Telomeric Repeat Binding Factor 1 (TRF1) and a Novel Acceptor, 182-kDa Tankyrase-binding Protein (TAB182). J Biol Chem 277: 14116–14126, 2002CrossRefPubMedGoogle Scholar
  23. 23.
    Bae J, Donigian JR, Hsueh AJ: Tankyrase 1 interacts with mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 278: 5195–5204, 2003CrossRefPubMedGoogle Scholar
  24. 24.
    Dynek JN, Smith S: Resolution of sister telomere association is required for progression through mitosis. Science 304: 97–100, 2004CrossRefPubMedGoogle Scholar
  25. 25.
    Cook BD, Dynek JN, Chang W, Shostak G, Smith S: Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22: 332–342, 2002CrossRefPubMedGoogle Scholar
  26. 26.
    Subramaniam R, Fan XJ, Scivittaro V, Yang J, Ha CE, Petersen CE, Surewicz WK, Bhagavan NV, Weiss MF, Monnier VM: Cellular oxidant stress and advanced glycation endproducts of albumin: caveats of the dichlorofluorescein assay. Arch Biochem Biophys 400: 15–25, 2002CrossRefPubMedGoogle Scholar
  27. 27.
    Boyonoski AC, Spronck JC, Gallacher LM, Jacobs RM, Shah GM, Poirier GG, Kirkland JB: Niacin deficiency decreases bone marrow poly(ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats. J Nutr 132: 108–114, 2002PubMedGoogle Scholar
  28. 28.
    Karp MT, Vuorinen PI: Simultaneous extraction and combined bioluminescent assay of oxidized and reduced nicotinamide adenine dinucleotide. Methods Enzymol 122: 147–152, 1986PubMedGoogle Scholar
  29. 29.
    Malanga M, Althaus FR: Poly(ADP-ribose) molecules formed during DNA repair in vivo. J Biol Chem 269: 17691–17696, 1994PubMedGoogle Scholar
  30. 30.
    Hsieh TJ, Liu TZ, Chia YC, Chern CL, Lu FJ, Chuang MC, Mau SY, Chen SH, Syu YH, Chen CH: Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells. Food Chem Toxicol 42: 843–850, 2004CrossRefPubMedGoogle Scholar
  31. 31.
    Cuttle L, Zhang XJ, Endre ZH, Winterford C, Gobe GC: Bcl-X(L) translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress. Kidney Int 59: 1779–1788, 2001CrossRefPubMedGoogle Scholar
  32. 32.
    Wiseman H, Halliwell B: Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313 (Pt 1): 17–29, 1996PubMedGoogle Scholar
  33. 33.
    Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G: PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274: 17860–17868, 1999CrossRefPubMedGoogle Scholar
  34. 34.
    Spronck JC, Kirkland JB: Niacin deficiency increases spontaneous and etoposide-induced chromosomal instability in rat bone marrow cells in vivo. Mutat Res 508: 83–97, 2002PubMedGoogle Scholar
  35. 35.
    Bernardi R, Negri C, Donzelli M, Guano F, Torti M, Prosperi E, Scovassi AI: activation of poly(ADP-ribose)polymerase in apoptotic human cells. Biochimie 77: 378–384, 1995CrossRefPubMedGoogle Scholar
  36. 36.
    Lamarre D, Talbot B, Leduc Y, Muller S, Poirier G: Production and characterization of monoclonal antibodies specific for the functional domains of poly(ADP-ribose) polymerase. Biochem Cell Biol 64: 368–376, 1986PubMedGoogle Scholar
  37. 37.
    Cande C, Cecconi F, Dessen P, Kroemer G: Apoptosis-inducing factor (AIF): Key to the conserved caspase-independent pathways of cell death? J Cell Sci 115: 4727–4734, 2002CrossRefPubMedGoogle Scholar
  38. 38.
    Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, Wang X: Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17: 1475–1486, 2003CrossRefPubMedGoogle Scholar
  39. 39.
    Di Lisa F, Ziegler M: Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett 492: 4–8, 2001.CrossRefPubMedGoogle Scholar
  40. 40.
    Wright SC, Wei QS, Kinder DH, Larrick JW: Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease and DNA fragmentation. J Exp Med 183: 463–471, 1996CrossRefPubMedGoogle Scholar
  41. 41.
    Chiarugi A, Moskowitz MA: Cell biology. PARP-1–A perpetrator of apoptotic cell death? Science 297: 200–201, 2002Google Scholar
  42. 42.
    Ying W, Sevigny MB, Chen Y, Swanson RA: Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death. Proc Natl Acad Sci USA 98: 12227–12232, 2001CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Tsung-Yin J. Yeh
    • 1
  • Juan I. Sbodio
    • 1
  • M. T. Audrey Nguyen
    • 1
  • Tobias N. Meyer
    • 2
  • Ray M. Lee
    • 3
  • Nai-Wen Chi
    • 1
    • 4
  1. 1.Department of Medicine and Cancer CenterUniversity of CaliforniaSan Diego, La Jolla
  2. 2.Department of MedicineUniversity of HamburgGermany
  3. 3.Department of MedicineUniversity of UtahSalt Lake City
  4. 4.University of CaliforniaDepartment of Medicine and Cancer CenterSan Diego

Personalised recommendations