Molecular and Cellular Biochemistry

, Volume 278, Issue 1–2, pp 39–51 | Cite as

Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: A potential mechanism for loss of mitochondrial transmembrane potential and apoptosis

  • Jennifer Y. Kong
  • Shaun S. Klassen
  • Simon W. RabkinEmail author


This study examined the impact of ceramide, an intracellular mediator of apoptosis, on the mitochondria to test the hypothesis that ceramide utilized p38 MAPK in the mitochondria to alter mitochondrial potential and induce apoptosis. The capacity of ceramide to adversely affect mitochondria was demonstrated by the significant loss of mitochondrial potential (ΔΨm), indicated by a J-aggregate fluorescent probe, after embryonic chick cardiomyocytes were treated with the cell permeable ceramide analogue C2-ceramide. p38 MAPK was identified in the mitochondrial fraction of the cell and p38 MAPK phosphorylation in this mitochondrial fraction of the cell occurred with ceramide treatment. In addition, SAPK phosphorylation and a decrease in ERK phosphorylation occurred in whole cell lysates after ceramide treatment. The p38 MAPK inhibitor SB 202190 but not the MEK inhibitor PD 98059 significantly inhibited ceramide-induced apoptosis and loss of ΔΨm. These data suggest that p38 MAPK is present in the mitochondria and its activation by ceramide indicates local signaling more directly coupled to the mitochondrial pathway in apoptosis. (Mol Cell Biochem 278: 39–51, 2005)

Key Word

ceramide cardiomyocytes heart p38 MAPK mitochondria apoptosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180, 1999PubMedGoogle Scholar
  2. 2.
    Johnson GL, Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912, 2002Google Scholar
  3. 3.
    Cowan JJ, Storey KB: Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206: 1107–1115, 2003CrossRefPubMedGoogle Scholar
  4. 4.
    Shi Y, Gaestel M: In the cellular garden of forking paths: hoe p38 MAPKs signal downstream for assistance. Biol Chem 383: 1519–1536, 2002CrossRefPubMedGoogle Scholar
  5. 5.
    Xia Z, Dickens M, Raingeaud J, Davis R, Geenberg M: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331, 1995PubMedGoogle Scholar
  6. 6.
    Birkenkamp KU, Dokter WH, Esselink MT, Jonk LJ, Kruijer W, Vellenga E: A dual function for p38 MAP kinase in hematopoietic cells: Involvement in apoptosis and cell activation. Leukemia 13: 1037–1045, 1999CrossRefPubMedGoogle Scholar
  7. 7.
    Cross TG, Scheel-Toellner D, Henriquez NV, Deacon E, Salmon M, Lord JM: Serine/threonine protein kinases and apoptosis. Exp Cell Res 256: 34–41, 2000CrossRefPubMedGoogle Scholar
  8. 8.
    Pettus BJ, Chalfant CE, Hannun YA: Ceramide in apoptosis: An overview and current perspectives. Biochim Biophys Acta 1585: 114–125, 2002PubMedGoogle Scholar
  9. 9.
    Mimeault M: New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett 530: 9–16, 2002CrossRefPubMedGoogle Scholar
  10. 10.
    Verheij M, Bose R, Lin XH: Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 380: 75–79, 1996CrossRefPubMedGoogle Scholar
  11. 11.
    Willaime S, Vanhoutte P, Caboche J, Lemaigre-Dubreuil Y, Mariani J, Brugg B: Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci 13: 2037–2046, 2001CrossRefPubMedGoogle Scholar
  12. 12.
    Tavarini S, Colombaioni L, Garcia-Gil M: Sphingomyelinase metabolites control survival and apoptotic death in SH-SY5Y neuroblastoma cells. Neurosci Lett 285: 185–188, 2000CrossRefPubMedGoogle Scholar
  13. 13.
    Hida H, Nagano S, Takeda M, Soliven B: Regulation of mitogen-activated protein kinases by sphingolipid products in oligodendrocytes. J Neurosci 19: 7458–7467, 1999PubMedGoogle Scholar
  14. 14.
    Jain RG, Meredith MJ, Pekala PH: Tumor necrosis factor-alpha mediated activation of signal transduction cascades and transcription factors in 3T3-L1 adipocytes. Adv Enzyme Regulat 38: 333–347, 1998CrossRefGoogle Scholar
  15. 15.
    Nieminen AL: Apoptosis and necrosis in health and disease: Role of mitochondria. Int Rev Cytol 224: 29–55, 2003PubMedGoogle Scholar
  16. 16.
    van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P: Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304: 487–497, 2003CrossRefPubMedGoogle Scholar
  17. 17.
    Gentil B, Grimot F, Riva C: Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome c release and caspase-3 activation in Hep-G2 cells. Mol Cell Biochem 254: 203–210, 2003CrossRefPubMedGoogle Scholar
  18. 18.
    Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G: Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272: 21388–21395, 1997Google Scholar
  19. 19.
    Garcia-Ruiz, C, Colell A, Mari M, Morales A, Fernandez-Checa JC: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272: 11369–11377, 1997Google Scholar
  20. 20.
    Gudz TI, Tserng KY, Hoppel CL: Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272: 24154–24158, 1997Google Scholar
  21. 21.
    Chen M, Wang J: Initiator caspases in apoptosis signaling pathways. Apoptosis 7: 313–31 9, 2002CrossRefPubMedGoogle Scholar
  22. 22.
    Pastorino JG, Tafani M, Rothman RJ, Marcinkeviciute A, Hoek JB, Farber JL, Marcinkeviciute A: Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. J Biol Chem. 274: 31734–31739, 1997Google Scholar
  23. 23.
    Kong JY, Rabkin SW: Mitochondrial effects with ceramide-induced cardiac apoptosis are different from those of palmitate. Arch Biochem Biophys 412: 196–206, 2003CrossRefPubMedGoogle Scholar
  24. 24.
    Willard FS, Crouch MF: MEK, ERK, and p90 RSK are present on mitotic tubulen in Swiss 3T3 cells: A role for MAP kinase pathway in regulating mitotic exit. Cell Signal 13: 653–664, 2001CrossRefPubMedGoogle Scholar
  25. 25.
    Nagata K, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T, Hirokawa N, Hall A: The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3. EMBO J 17: 149–158, 1998CrossRefPubMedGoogle Scholar
  26. 26.
    Yang TT, Xiong Q, Enslen H, Davis RJ, Chow CW: Phosphorylation of NFATc4 by p38 mitogen activated protein kinases. Mol Cell Biol 22: 3892–3904, 2002CrossRefPubMedGoogle Scholar
  27. 27.
    Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N, Kharbanda S, Anderson KC: JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. Biol Chem 278: 17593–17596, 2003CrossRefGoogle Scholar
  28. 28.
    Rabkin SW, Kong JY: Nitroprusside induces cardiomyocyte death: Interaction with hydrogen peroxide. Am J Physiol (Heart Circulat) 279: H3089–H3100, 2000Google Scholar
  29. 29.
    Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD: Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 46, 126–138, 2000.CrossRefPubMedGoogle Scholar
  30. 30.
    Kong JY, Rabkin SW: Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: Prevention by cyclosporin. Biochim Biophys Acta 55608: 1–11, 2000Google Scholar
  31. 31.
    Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278: 8516–8525, 2003Google Scholar
  32. 32.
    Reid E, Williamson R: Centrifugation. Methods Enzymol 31, 713–733, 1974.PubMedGoogle Scholar
  33. 33.
    Botla R, Spivey JR, Aguilar H, Bronk SF, Gores GJ: Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycohenodeoxycholate: A mechanism of UDCA cytoprotection. J Pharm Exp Ther 272: 930–938, 1995Google Scholar
  34. 34.
    Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F: Features of apoptotic cells measured by flow cytometry. Cytometry 13: 795–808, 1992CrossRefPubMedGoogle Scholar
  35. 35.
    Young PR, McLaughlin MM, Kumar S, Kassis S, Doyle ML, McNulty D, Gallagher TF, Fisher S, McDonnell PC, Carr SA, Huddleston MJ, Seibel G, Porter TG, Livi GP, Adams JL, Lee JC: Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272: 12116–12121, 1997CrossRefPubMedGoogle Scholar
  36. 36.
    Dedov VN, Mandadi S, Armati PJ, Verkhratsky A: Capsaicin-induced depolarization of mitochondria in dorsal root ganglion neurons is enhanced by vanilloid receptors. Neuroscience 103: 219–226, 2001CrossRefPubMedGoogle Scholar
  37. 37.
    Singh RP, Dhawan P, Golden C, Kapoor GS, Mehta KD: One-way cross-talk between p38(MAPK) and p42/44(MAPK). Inhibition of p38(MAPK) induces low density lipoprotein receptor expression through activation of the p42/44(MAPK) cascade. J Biol Chem 274: 19593–19600, 1999CrossRefPubMedGoogle Scholar
  38. 38.
    Kultz D, Garcia-Perez A, Ferraris JD, Burg MB: Distinct regulation of osmoprotective genes in yeast and mammals. Aldose reductase osmotic response element is induced independent of p38 and stress-activated protein kinase/Jun N-terminal kinase in rabbit kidney cells. J Biol Chem 272: 13165–13170, 1997CrossRefPubMedGoogle Scholar
  39. 39.
    Wiltshire C, Matsushita M, Tsukada S, Gillespie DA, May GH: A new c-Jun N-terminal kinase (JNK)-interacting protein, Sab (SH3BP5), associates with mitochondria. Biochem J 367: 577–585, 2002CrossRefPubMedGoogle Scholar
  40. 40.
    Ito Y, Mishra NC, Yoshida K, Kharbanda S, Saxena S, Kufe D: Mitochondrial targeting of JNK/SAPK in the phorbol ester response of myeloid leukemia cells. Cell Death Diff 8: 794–800, 2001CrossRefGoogle Scholar
  41. 41.
    Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C, Kufe D: Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275: 322–327, 2000CrossRefPubMedGoogle Scholar
  42. 42.
    Ruvolo PP, Deng X, Carr BK, May WS: A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 273: 25436–25442, 1998.CrossRefPubMedGoogle Scholar
  43. 43.
    Majumder PK, Pandey P, Sun X, Cheng K, Datta R, Saxena S, Kharbanda S, Kufe D: Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem 275: 21793–21796, 2000CrossRefPubMedGoogle Scholar
  44. 44.
    Smiley ST, Reers M, Mottola-Harthshorn C, Lin M, Chen A, Smith TW, Steele GD Jr, Chen LB: Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88: 3671–3675, 1991PubMedGoogle Scholar
  45. 45.
    Ly JD, Grubb DR, Lawen A: The mitochondrial membrane potential (deltapsi(m)) in apoptosis; An update. Apoptosis 8: 115–128, 2003CrossRefPubMedGoogle Scholar
  46. 46.
    Rehm M, Dussmann H, Prehn JH: Real-time single cell analysis of Smac/DIABLO release during apoptosis. J Cell Biol 162: 1031–1043, 2003CrossRefPubMedGoogle Scholar
  47. 47.
    Bains SK, Mone A, Yun Tso J, Lucas D, Byrd JC, Weiner GJ, Green JM: Mitochondria control of cell death induced by anti-HLA-DR antibodies. Leukemia 17: 1357–1365, 2003CrossRefPubMedGoogle Scholar
  48. 48.
    Zhao TC, Hines DS, Kukreja RC: Adenosine-induced late preconditioning in mouse hearts: Role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol (Heart Circulat Physiol) 280: H1278–H1285, 2001Google Scholar
  49. 49.
    Chen KD, Lai MT, Cho JH, Chen LY, Lai YK: Activation of p38 mitogen-activated protein kinase and mitochondrial Ca(2+)-mediated oxidative stress are essential for the enhanced expression of grp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J Cell Biochem 76: 585–595, 2000CrossRefPubMedGoogle Scholar
  50. 50.
    Galan A, Garcia-Bermejo ML, Troyano A, Vilaboa NE, de Blas E, Kazanietz MG, Aller P: Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem 275: 11418–11424, 2000CrossRefPubMedGoogle Scholar
  51. 51.
    Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P: Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: Enhanced mitochondrial PKCepsilon–MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90: 390–397, 2002CrossRefPubMedGoogle Scholar
  52. 52.
    Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR: Novel homologues of CSBP/p38 MAP kinase: Activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235: 533–538, 1997CrossRefPubMedGoogle Scholar
  53. 53.
    Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372(6508): 739–746, 1994CrossRefPubMedGoogle Scholar
  54. 54.
    Young PR, McLaughlin MM, Kumar S, Kassis S, Doyle ML, McNulty D, Gallagher TF, Fisher S, McDonnell PC, Carr SA, Huddleston MJ, Seibel G, Porter TG, Livi GP, Adams JL, Lee JC: Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 272: 12116–12121, 1997CrossRefPubMedGoogle Scholar
  55. 55.
    Tong L, Pav S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA: A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Struc Biol 4: 311–316, 1997CrossRefGoogle Scholar
  56. 56.
    Bernardi P: Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 79: 1127–1155, 1999PubMedGoogle Scholar
  57. 57.
    Martinou JC, Green DR: Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2: 63–67, 2001CrossRefPubMedGoogle Scholar
  58. 58.
    Crompton M: 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem J 341: 233–249, 2003CrossRefGoogle Scholar
  59. 59.
    Erhardt P, Schremser EJ, Cooper GM: B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 19: 5308–5315, 1999PubMedGoogle Scholar
  60. 60.
    Rabkin SW, Sunga PS, Sanghera JS, Pelech SL: Reduction of angiotensin II-induced activation of mitogen-activated protein kinase in cardiac hypertrophy. Cell Mol Life Sci 53: 951–959, 1997CrossRefPubMedGoogle Scholar
  61. 61.
    Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH: Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79: 162–173, 1996PubMedGoogle Scholar
  62. 62.
    Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun YA, Umansky SR: Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol 151: 1257–1263, 1997PubMedGoogle Scholar
  63. 63.
    Gottlieb RA, Engler RL: Apoptosis in myocardial ischemia reperfusion. Ann N Y Acad Sci 73: 412–426, 1999Google Scholar
  64. 64.
    Delpy E, Hatem SN, Andrieu N, de Vaumas C, Henaff M, Rucker-Martin C, Jaffrezou P, Laurent G, Levade T, Mercadier JJ: Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovasc Res 43: 398–407, 1999CrossRefPubMedGoogle Scholar
  65. 65.
    Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B: The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366: 177–196, 1998PubMedGoogle Scholar
  66. 66.
    Kong JY, Rabkin SW: Thapsigargin enhances camptothecin-induced apoptosis in cardiomyocytes. Pharmacol Toxicol 85: 212–220, 1999PubMedGoogle Scholar
  67. 67.
    Kong JY, Rabkin SW: Lovastatin does not accentuate but is rather additive to palmitate-induced apoptosis in cardiomyocytes. Prostaglandins, Leukotrienes Essential Fatty Acids 67: 293–302, 2002Google Scholar
  68. 68.
    Wang J, Zhen L, Klug MG, Wood D, Wu X, Mizrahi J: Involvement of caspase 3- and 8-like proteases in ceramide-induced apoptosis of cardiomyocytes. J Cardiac Failure 6: 243–249, 2000CrossRefGoogle Scholar
  69. 69.
    Siskind LJ, Kolesnick RN, Colombini M: Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277: 26796–26803, 2002CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jennifer Y. Kong
    • 1
  • Shaun S. Klassen
    • 1
  • Simon W. Rabkin
    • 1
    Email author
  1. 1.Department of Medicine (Cardiology)University of British ColumbiaVancouverCanada

Personalised recommendations