On Estimation for Brownian Motion Governed by Telegraph Process with Multiple Off States

Abstract

Brownian motion whose infinitesimal variance changes according to a three-state continuous-time Markov Chain is studied. This Markov Chain can be viewed as a telegraph process with one on state and two off states. We first derive the distribution of occupation time of the on state. Then the result is used to develop a likelihood estimation procedure when the stochastic process at hand is observed at discrete, possibly irregularly spaced time points. The likelihood function is evaluated with the forward algorithm in the general framework of hidden Markov models. The analytic results are confirmed with simulation studies. The estimation procedure is applied to analyze the position data from a mountain lion.

This is a preview of subscription content, log in to check access.

References

  1. Bshouty D, Di Crescenzo A, Martinucci B, Zacks S (2012) Generalized telegraph process with random delays. J Appl Probab 49:850–865

    MathSciNet  Article  Google Scholar 

  2. Cappé O, Moulines E, Rydén T (2005) Inference in Hidden Markov Models. Springer, Berlin

  3. Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. Journal of The Royal Society Interface 5:813–834

    Article  Google Scholar 

  4. De Gregorio A, Iacus SM (2008) Parametric estimation for the standard and geometric telegraph process observed at discrete times. Stat Infer Stoch Process 11:249–263

    MathSciNet  Article  Google Scholar 

  5. De Gregorio A, Iacus SM (2011) Least-squares change-point estimation for the telegraph process observed at discrete times. Statistics 45:349–359

    MathSciNet  Article  Google Scholar 

  6. Di Crescenzo A (2001) On random motions with velocities alternating at Erlang-distributed random times. Adv Appl Probab 33:690–701

    MathSciNet  Article  Google Scholar 

  7. Di Crescenzo A, Pellerey F (2002) On prices’ evolutions based on geometric telegrapher’s process. Appl Stoch Model Bus Ind 18:171–184

    MathSciNet  Article  Google Scholar 

  8. Di Crescenzo A, Martinucci B, Zacks S (2014) On the geometric brownian motion with alternating trend. In: Perna C, Sibillo M (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer, Dordrecht, pp 81–85

  9. Di Crescenzo A, Zacks S (2015) Probability law and flow function of Brownian motion driven by a generalized telegraph process. Methodol Comput Appl Probab 17:761–780

    MathSciNet  Article  Google Scholar 

  10. Efron B, Hinkley D (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65:457–487

    MathSciNet  Article  Google Scholar 

  11. Efron B, Tibshirani R (1994) An Introduction to the Bootstrap. CRC Press, Boca Raton

  12. Horne JS, Garton EO, Krone SM, Lewis SJ (2007) Analyzing animal movements using Brownian bridges. Ecology 88:2354–2363

    Article  Google Scholar 

  13. Hu C, Pozdnyakov V, Yan J (2019a) coga: Convolution of Gamma Distributions. R package version 1.0.0

  14. Hu C, Pozdnyakov V, Yan J (2019b) Density and distribution evaluation for convolution of independent gamma variables. Computational Statistics. In press

  15. Iacus SM, Yoshida N (2008) Estimation for the discretely observed telegraph process. Teor Ĭmovı̄rnosteı̆ Mat Stat 78:32–42

    MATH  Google Scholar 

  16. Kolesnik AD, Ratanov N (2013) Telegraph processes and option pricing. Springer Briefs in Statistics, Springer, Berlin

  17. Lindsay BG (1988) Composite likelihood methods. Contemp Math 80:221–239

    MathSciNet  Article  Google Scholar 

  18. Mathai A (1982) The storage capacity of a dam with gamma type inputs. Ann Inst Stat Math 34:591–597

    MathSciNet  Article  Google Scholar 

  19. Moschopoulos P (1985) The distribution of the sum of independent gamma random variables. Ann Inst Stat Math 37:541–544

    MathSciNet  Article  Google Scholar 

  20. Norris JR (1998) Markov Chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge. Reprint of 1997 original

  21. Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:263–298

    MathSciNet  Article  Google Scholar 

  22. Perry D, Stadje W, Zacks S (1999) First-exit times for increasing compound processes. Commun Stat Stoch Mod 15:977–992

    MathSciNet  MATH  Google Scholar 

  23. Pozdnyakov V, Meyer T, Wang Y-B, Yan J (2014) On modeling animal movements using brownian motion with measurement error. Ecol 95:247–253

    Article  Google Scholar 

  24. Pozdnyakov V, Elbroch L, Labarga A, Meyer T, Yan J (2019) Discretely observed Brownian motion governed by telegraph process: estimation. Methodol Comput Appl Probab 21:907–920

    MathSciNet  Article  Google Scholar 

  25. Preisler HK, Ager AA, Johnson BK, Kie JG (2004) Modeling animal movements using stochastic differential equations. Environmetrics 15:643–657

    Article  Google Scholar 

  26. Sericola B (2000) Occupation times in markov processes. Communications in Statistics. Stoch Model 16:479–510

    MathSciNet  Article  Google Scholar 

  27. Stadje W, Zacks S (2004) Telegraph processes with random velocities. J Appl Probab 41:665–678

    MathSciNet  Article  Google Scholar 

  28. Tilles PFC, Petrovskii SV (2016) How animals move along? exactly solvable model of superdiffusive spread resulting from animal’s decision making. J Math Biol 73:227–55

    MathSciNet  Article  Google Scholar 

  29. Viterbi AJ (2006) A personal history of the Viterbi algorithm. IEEE Signal Proc Mag 23:120–142

    Article  Google Scholar 

  30. Yan J, Chen Y-W, Lawrence-Apfel K, Ortega I, Pozdnyakov V, Williams S, Meyer T (2014) A moving-resting process with an embedded Brownian motion for animal movements. Popul Ecol 56:401–415

    Article  Google Scholar 

  31. Yan J, Pozdnyakov V, Hu C (2019) smam: Statistical Modeling of Animal Movements. R package version 0.4.0

  32. Zacks S (2004) Generalized integrated telegraph processes and the distribution of related stopping times. J Appl Probab 41:497–507

    MathSciNet  Article  Google Scholar 

  33. Zacks S (2012) Distribution of the total time in a mode of an alternating renewal process with applications. Seq Anal 31:397–408

    MathSciNet  MATH  Google Scholar 

  34. Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov Models for Time Series: An Introduction Using R, 2 edn. Chapman and Hall/CRC, London

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Pozdnyakov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pozdnyakov, V., Elbroch, L.M., Hu, C. et al. On Estimation for Brownian Motion Governed by Telegraph Process with Multiple Off States. Methodol Comput Appl Probab 22, 1275–1291 (2020). https://doi.org/10.1007/s11009-020-09774-1

Download citation

Keywords

  • Forward algorithm
  • Likelihood estimation
  • Markov process
  • Occupation time

Mathematics Subject Classification (2010)

  • 62M05
  • 62P10