Methodology and Computing in Applied Probability

, Volume 19, Issue 4, pp 1089–1105 | Cite as

Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks

  • Holger Weishaupt
  • Patrik Johansson
  • Christopher Engström
  • Sven Nelander
  • Sergei Silvestrov
  • Fredrik J Swartling
Open Access


Graph centralities are commonly used to identify and prioritize disease genes in transcriptional regulatory networks. Studies on small networks of experimentally validated protein-protein interactions underpin the general validity of this approach and extensions of such findings have recently been proposed for networks inferred from gene expression data. However, it is largely unknown how well gene centralities are preserved between the underlying biological interactions and the networks inferred from gene expression data. Specifically, while previous studies have evaluated the performance of inference methods on synthetic gene expression, it has not been established how the choice of inference method affects individual centralities in the network. Here, we compare two gene centrality measures between reference networks and networks inferred from corresponding simulated gene expression data, using a number of commonly used network inference methods. The results indicate that the centrality of genes is only moderately conserved for all of the inference methods used. In conclusion, caution should be exercised when inspecting centralities in reverse-engineered networks and further work will be required to establish the use of such networks for prioritizing disease genes.


Transcriptional regulatory network inference Simulated gene expression Graph centrality 

Mathematics Subject Classification (2010)

05Cxx 92C42 


  1. Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing networks in cell biology. Brief Bioinforma 7(3):243–255CrossRefGoogle Scholar
  2. Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118(21):4947–4957CrossRefGoogle Scholar
  3. Altay G, Emmert-Streib F (2010a) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 4(1):132CrossRefGoogle Scholar
  4. Altay G, Emmert-Streib F (2010b) Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26(14):1738–1744CrossRefGoogle Scholar
  5. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human b cells. Nat Genet 37 (4):382–390CrossRefGoogle Scholar
  6. Brandes U (2001) A faster algorithm for betweenness centrality*. J Math Sociol 25(2):163–177CrossRefMATHGoogle Scholar
  7. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur Ö, Anwar N, Schultz N, Bader GD, Sander C (2011) Pathway commons, a web resource for biological pathway data. Nucleic Acids Res 39(suppl 1):D685–D690CrossRefGoogle Scholar
  8. Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L, Jothi R, Babu MM (2012) Interplay between gene expression noise and regulatory network architecture. Trends Genet 28(5):221–232CrossRefGoogle Scholar
  9. Cordero D, Solé X, Crous-Bou M, Sanz-Pamplona R, Paré L, Guinó E, Olivares D, Berenguer A, Santos C, Salazar R et al (2014) Large differences in global transcriptional regulatory programs of normal and tumor colon cells. BMC Cancer 14(1):708CrossRefGoogle Scholar
  10. Dancelli L, Manisera M, Vezzoli M (2013) On two classes of weighted rank correlation measures deriving from the spearman’s ρ Statistical Models for Data Analysis. Springer, pp 107–114Google Scholar
  11. De Matos Simoes R, Dehmer M, Emmert-Streib F (2013) B-cell lymphoma gene regulatory networks: biological consistency among inference methods. Frontiers in genetics, 4Google Scholar
  12. De Matos Simoes R, Emmert-Streib F (2012) Bagging statistical network inference from large-scale gene expression data. PLoS One 7(3):e33624CrossRefGoogle Scholar
  13. Emmert-Streib F, De Matos Simoes R, Mullan P, Haibe-Kains B, Dehmer M (2014) The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks. Frontiers in genetics, 5Google Scholar
  14. Erdős P, Rényi A (1959) On random graphs, i. Publ Math Debr 6:290–297Google Scholar
  15. Estrada E (2006a) Protein bipartivity and essentiality in the yeast protein- protein interaction network. J Proteome Res 5(9):2177–2184CrossRefGoogle Scholar
  16. Estrada E (2006b) Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6(1):35–40CrossRefGoogle Scholar
  17. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS (2007) Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8CrossRefGoogle Scholar
  18. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry, pp 35–41Google Scholar
  19. Gleich DF, Saunders M (2009) Models and algorithms for pagerank sensitivity. Stanford UniversityGoogle Scholar
  20. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease network. Proc Nat Acad Sci 104(21):8685–8690CrossRefGoogle Scholar
  21. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22(4):803–806CrossRefGoogle Scholar
  22. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PloS one 5(9):e12776CrossRefGoogle Scholar
  23. Izudheen S, Mathew S (2013) Cancer gene identification using graph centrality. Curr Sci 105(8):1143Google Scholar
  24. Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42CrossRefGoogle Scholar
  25. Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18):2291–2297CrossRefGoogle Scholar
  26. Jörnsten R, Abenius T, Kling T, Schmidt L, Johansson E, Nordling TE, Nordlander B, Sander C, Gennemark P, Funa K et al (2011) Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Mol Syst Biol 7(1):486CrossRefGoogle Scholar
  27. Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the yeast protein interaction network. BioMed Res Int 2005(2):96–103Google Scholar
  28. Knaack SA, Siahpirani AF, Roy S (2014) A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components. Cancer Inf 13(Suppl 5):69Google Scholar
  29. Knüpfer C, Dittrich P, Beckstein C (2004) Artificial gene regulation: A data source for validation of reverse bioengineering. In: Proceedings of the 6th German Workshop on Artificial Life (GWAL6), pp 66–75Google Scholar
  30. Koschützki D, Schreiber F (2008) Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul Syst Biol 2:193Google Scholar
  31. Langfelder P, Horvath S (2008) Wgcna: an r package for weighted correlation network analysis. BMC bioinformatics 9(1):559CrossRefGoogle Scholar
  32. Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis. PloS one 8(4):e61505CrossRefGoogle Scholar
  33. Liu Z-P (2015) Reverse engineering of genome-wide gene regulatory networks from gene expression data. Curr Genomics 16(1):3–22CrossRefGoogle Scholar
  34. Liu Z-P, Wu H, Zhu J, Miao H (2014) Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza a virus infection. BMC Bioinforma 15(1):336CrossRefGoogle Scholar
  35. Ma X, Gao L (2012) Biological network analysis: insights into structure and functions. Brief Funct Genomics 11(6):434–442CrossRefGoogle Scholar
  36. Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Kellis M, Collins JJ, Stolovitzky G et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804CrossRefGoogle Scholar
  37. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Nat Acad Sci 107(14):6286–6291CrossRefGoogle Scholar
  38. Margolin AA, Califano A (2007) Theory and limitations of genetic network inference from microarray data. Ann New York Acad Sci 1115(1):51–72CrossRefGoogle Scholar
  39. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mamMalian cellular context. BMC Bioinform 7(Suppl 1):S7CrossRefGoogle Scholar
  40. MATLAB (2015) version 7.10.0 (R2015a), The MathWorks Inc., Natick, MassachusettsGoogle Scholar
  41. Mendes P, Sha W, Ye K (2003) Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19(suppl 2):ii122–ii129CrossRefGoogle Scholar
  42. Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinforms Syst Biol 2007:8–8Google Scholar
  43. Meyer PE, Lafitte F, Bontempi G (2008) Minet: Ar/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform 9(1):461CrossRefGoogle Scholar
  44. Ortutay C, Vihinen M (2009) Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res 37(2):622–628CrossRefGoogle Scholar
  45. Özgür A, Vu T, Erkan G, Radev DR (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24(13):i277–i285CrossRefGoogle Scholar
  46. Painter MW, Davis S, Hardy R, Mathis D, Benoist C, Zhou Y, Shinton S, Hardy R, Asinovski N, Ergun A et al (2011) Transcriptomes of the b and t lineages compared by multiplatform microarray profiling. J Immunol 186 (5):3047–3057CrossRefGoogle Scholar
  47. Pozzi F, Di Matteo T, Aste T (2012) Exponential smoothing weighted correlations. Eur Phys J B 85(6):1–21CrossRefGoogle Scholar
  48. Schaffter T, Marbach D, Floreano D (2011) Genenetweaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27 (16):2263–2270CrossRefGoogle Scholar
  49. Siddani BR, Pochineni LP, Palanisamy M (2013) Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. PloS one 8(12):e81766CrossRefGoogle Scholar
  50. Tarsitano A (2009) Comparing the effectiveness of rank correlation statistics. P: Dip. di Economia e Statistica, University of della CalabriaGoogle Scholar
  51. Tuna S, Niranjan M (2009) Cross-platform analysis with binarized gene expression data Pattern Recognition in Bioinformatics. Springer, pp 439–449Google Scholar
  52. Van den Bulcke T, Van Leemput K, Naudts B, Van Remortel P, Ma H, Verschoren A, De Moor B, Marchal K (2006) Syntren: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinform 7(1):43CrossRefGoogle Scholar
  53. Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21(23):4205–4208CrossRefGoogle Scholar
  54. Weishaupt H, Johansson P, Engström C, Nelander S, Silvestrov S, Swartling FJ (2016) Prediction of high centrality nodes from reverseengineered transcriptional regulator networks. In: SMTDA 2016 Proceedings: / 4th Stochastic Modeling Techniques and Data Analysis International Conference / [ed] H. Skiadas (Ed), ISAST: International Society for the Advancement of Science and Technology, pp 517?-531Google Scholar
  55. Welch BL (1947) The generalization ofstudent’s’ problem when several different population variances are involved. Biometrika, pp 28–35Google Scholar
  56. Wieczorek G, Steinhoff C, Schulz R, Scheller M, Vingron M, Ropers H-H, Nuber UA (2003) Gene expression profile of mouse bone marrow stromal cells determined by cdna microarray analysis. Cell Tissue Res 311(2):227–237Google Scholar
  57. Wu S, Liu Z-P, Qiu X, Wu H (2014) Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations. PloS one 9(5):e95276CrossRefGoogle Scholar
  58. Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22(22):2800–2805CrossRefGoogle Scholar
  59. Yip KY, Alexander RP, Yan K-K, Gerstein M (2010) Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PloS one 5(1):e8121–e8121CrossRefGoogle Scholar
  60. Zhang M, Deng J, Fang CV, Zhang X, Lu L (2010) Molecular network analysis and applications. Knowledge-Based Bioinformatics, pp 253Google Scholar
  61. Zhang X, Zhao X-M, He K, Lu L, Cao Y, Liu J, Hao J-K, Liu Z-P, Chen L (2012) Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28 (1):98–104CrossRefGoogle Scholar
  62. Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Immunology, Genetics and Pathology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Division of Applied Mathematics, The School of Education, Culture and Communication (UKK)Mälardalen UniversityVästeråsSweden

Personalised recommendations