Advertisement

Methodology and Computing in Applied Probability

, Volume 20, Issue 3, pp 919–933 | Cite as

Variance Allocation and Shapley Value

  • Riccardo Colini-Baldeschi
  • Marco Scarsini
  • Stefano Vaccari
Article
  • 86 Downloads

Abstract

Motivated by the problem of utility allocation in a portfolio under a Markowitz mean-variance choice paradigm, we propose an allocation criterion for the variance of the sum of n possibly dependent random variables. This criterion, the Shapley value, requires to translate the problem into a cooperative game. The Shapley value has nice properties, but, in general, is computationally demanding. The main result of this paper shows that in our particular case the Shapley value has a very simple form that can be easily computed. The same criterion is used also to allocate the standard deviation of the sum of n random variables and a conjecture about the relation of the values in the two games is formulated.

Keywords

Shapley value Core Variance game Covariance matrix Computational complexity 

Mathematics Subject Classification (2010)

91A12 62J10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi B, Hosseinifard SZ (2013) Tail conditional expectation for multivarite distributions: a game theory approach. Statist Probab Lett 83(10):2228–2235. doi: 10.1016/j.spl.2013.06.012
  2. Anily S, Haviv M (2010) Cooperation in service systems. Oper Res 58(3):660–673. 10.1287/opre.1090.0737Google Scholar
  3. Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9(3):203–228. doi: 10.1111/1467-9965.00068
  4. Aumann RJ, Shapley LS (1974) Values of Non-Atomic Games. Princeton University Press, Princeton, N.JGoogle Scholar
  5. Azari Soufiani H, Chickering DM, Charles DX, Parkes DC (2014) Approximating the Shapley value via multi-issue decompositions. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, AAMAS ’14, pp 1209–1216. http://dl.acm.org/citation.cfm?id=2615731.2617441
  6. Barlow RE, Proschan F (1975) Importance of system components and fault tree events. Stochastic Process Appl 3(2):153–173. doi: 10.1016/0304-4149(75)90013-7.
  7. Castro J, Gómez D, Tejada J (2009) Polynomial calculation of the Shapley value based on sampling. Comput Oper Res 36(5):1726–1730. doi: 10.1016/j.cor.2008.04.004
  8. Chalkiadakis G, Elkind E, Wooldridge M (2011) Computational Aspects of Cooperative Game Theory. Morgan & Claypool Publishers. doi: 10.2200/S00355ED1V01Y201107AIM016
  9. Chastaing G, Gamboa F, Prieur C (2012) Generalized Hoeffding-Sobol decomposition for dependent variables—application to sensitivity analysis. Electron J Stat 6:2420–2448. doi: 10.1214/12-EJS749.
  10. Chastaing G, Gamboa F, Prieur C (2015) Generalized Sobol sensitivity indices for dependent variables: numerical methods. J Stat Comput Simul 85(7):1306–1333. doi: 10.1080/00949655.2014.960415.
  11. Conitzer V, Sandholm T (2004) Computing Shapley values, manipulating value division schemes, and checking core membership in multi-issue domains. http://dl.acm.org/citation.cfm?id=1597148.1597185
  12. Denault M (2001) Coherent allocation of risk capital. J Risk 4:1–34CrossRefGoogle Scholar
  13. Deng XT, Papadimitriou CH (1994) On the complexity of cooperative solution concepts. Math Oper Res 19(2):257–266. doi: 10.1287/moor.19.2.257
  14. Fama EF, French KR (2004) The capital asset pricing model: Theory and evidence. J Econom Perspect 18(3):25–46. http://www.jstor.org/stable/3216805
  15. Fatima SS, Wooldridge M, Jennings NR (2008) A linear approximation method for the Shapley value. Artif Intell 172(14):1673–1699. doi: 10.1016/j.artint.2008.05.003
  16. Fatima SS, Wooldridge M, Jennings NR (2010) An approximation method for power indices for voting games. In: Innovations in Agent-Based Complex Automated Negotiations. Springer, Berlin, pp 179–193. doi: 10.1007/978-3-642-15612-0_10
  17. Gilquin L, Prieur C, Arnaud E (2015) Replication procedure for grouped Sobol′ indices estimation in dependent uncertainty spaces. Inf Inference 4(4):354–379. doi: 10.1093/imaiai/iav010
  18. Grömping U (2007) Estimators of relative importance in linear regression based on variance decomposition. Amer Statist 61(2):139–147. doi: 10.1198/000313007X188252
  19. Grömping U (2009) Variable importance assessment in regression: linear regression versus random forest. Amer Statist 63(4):308–319. doi: 10.1198/tast.2009.08199
  20. Grömping U, Landau S (2010) Do not adjust coefficients in Shapley value regression. Appl Stoch Models Bus Ind 26(2):194–202. doi: 10.1002/asmb.773
  21. Ieong S, Shoham Y (2005) Marginal contribution nets: A compact representation scheme for coalitional games. In: Proceedings of the 6th ACM Conference on Electronic Commerce, ACM, New York, NY, USA, EC ’05, pp 193–202. doi: 10.1145/1064009.1064030
  22. Ieong S, Shoham Y (2006) Multi-attribute coalitional games. In: Proceedings of the 7th ACM Conference on Electronic Commerce, ACM, New York, NY, USA, EC ’06, pp 170–179. doi: 10.1145/1134707.1134726
  23. Kruskal W (1987) Relative importance by averaging over orderings. Amer Statist 41(1):6–10. http://www.jstor.org/stable/2684310
  24. Lemaire J (1984) An application of game theory: Cost allocation. Astin Bull 14 (1):61–81MathSciNetCrossRefGoogle Scholar
  25. Lindeman RH, Merenda PF, Gold RZ (1980) Introduction to Bivariate and Multivariate Analysis. Scott, Foresman and Company, Homewood, ILGoogle Scholar
  26. Lintner J (1965) The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev Econom Statist 47(1):13–37. http://www.jstor.org/stable/1924119
  27. Lipovetsky S (2006) Entropy criterion in logistic regression and Shapley value of predictors. J Mod Appl Statist Methods 5(1). Article 9, http://digitalcommons.wayne.edu/jmasm/vol5/iss1/9
  28. Lipovetsky S, Conklin M (2001) Analysis of regression in game theory approach. Appl Stoch Models Bus Ind 17(4):319–330. doi: 10.1002/asmb.446
  29. Marichal JL, Mathonet P (2013) On the extensions of Barlow-Proschan importance index and system signature to dependent lifetimes. J Multivariate Anal 115:48–56. doi: 10.1016/j.jmva.2012.09.002
  30. Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91. doi: 10.2307/2975974
  31. Marshall AW, Olkin I, Arnold BC (2011). In: 2nd edn (ed) Inequalities: Theory of Majorization and its Applications. Springer, New York. doi: 10.1007/978-0-387-68276-1
  32. Maschler M, Solan E, Zamir S (2013) Game Theory. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511794216
  33. Mishra SK (2016) Shapley value regression and the resolution of multicollinearity. Tech. Rep. 72116, MPRA, https://mpra.ub.uni-muenchen.de/id/eprint/72116
  34. Montrucchio L, Scarsini M (2007) Large newsvendor games. Games Econom Behav 58(2):316–337. doi: 10.1016/j.geb.2006.04.003
  35. Moretti S, Patrone F (2008) Transversality of the Shapley value. TOP 16(1):1–41. doi: 10.1007/s11750-008-0044-5
  36. Müller A, Scarsini M, Shaked M (2002) The newsvendor game has a nonempty core. Games Econom Behav 38(1):118–126. doi: 10.1006/game.2001.0854
  37. Muller ME (1959) A note on a method for generating points uniformly on n-dimensional spheres. Commun ACM 2(4):19–20. doi: 10.1145/377939.377946
  38. Owen AB (2013) Variance components and generalized Sobol′ indices. SIAM/ASA J Uncertain Quantif 1(1):19–41. doi: 10.1137/120876782
  39. Owen AB (2014) Sobol′ indices and Shapley value. SIAM/ASA J Uncertain Quantif 2(1):245–251. doi: 10.1137/130936233
  40. Owen AB, Prieur C (2016) On Shapley value for measuring importance of dependent inputs. Tech. rep. arXiv:161002080
  41. Peleg B, Sudhölter P (2007) Introduction to the Theory of Cooperative Games, 2nd edn. Springer, BerlinGoogle Scholar
  42. Shapley LS (1953) A value for n-person games. Princeton University Press, Princeton, N. J.Google Scholar
  43. Shapley LS (1971/72) Cores of convex games. Int J Game Theory 1:11–26. errata, ibid. 1 (1971/72), 199Google Scholar
  44. Sharpe WF (1964) Capital asset prices: A theory of market equilibrium under conditions of risk. J Finance 19(3):425–442. http://www.jstor.org/stable/2977928 Google Scholar
  45. Sobol′ IM (1990) Estimation of the sensitivity of nonlinear mathematical models. Mat Model 2(1):112–118Google Scholar
  46. Sobol′ IM (1993) Sensitivity estimates for nonlinear mathematical models (1995). Math Modeling Comput Experiment 1(4):407–414Google Scholar
  47. Song E, Nelson BL, Staum J (2016) Shapley effects for global sensitivity analysis: theory and computation. SIAM/ASA J Uncertain Quantif 4(1):1060–1083. doi: 10.1137/15M1048070
  48. Steinbach MC (2001) Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Rev 43(1):31–85. doi: 10.1137/S0036144500376650
  49. Tsanakas A (2004) Dynamic capital allocation with distortion risk measures. Insurance Math Econom 35(2):223–243. doi: 10.1016/j.insmatheco.2003.09.005 MathSciNetCrossRefMATHGoogle Scholar
  50. Tsanakas A (2009) To split or not to split: capital allocation with convex risk measures. Insurance Math Econom 44(2):268–277. doi: 10.1016/j.insmatheco.2008.03.007
  51. Tsanakas A, Barnett C (2003) Risk capital allocation and cooperative pricing of insurance liabilities. Insurance Math Econom 33(2):239–254. doi: 10.1016/S0167-6687(03)00137-9
  52. Wang S (2002) A set of new methods and tools for enterprise risk capital management and portfolio optimization. Tech. rep. SCOR Reinsurance CompanyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Dipartimento di Economia e FinanzaLUISSRomaItaly
  2. 2.Dipartimento MEMOTEFSapienza-Università di RomaRomaItaly

Personalised recommendations