Advertisement

Series Representations for Multivariate Time-Changed Lévy Models

  • Vladimir PanovEmail author
Article

Abstract

In this paper, we analyze a Lévy model based on two popular concepts - subordination and Lévy copulas. More precisely, we consider a two-dimensional Lévy process such that each component is a time-changed (subordinated) Brownian motion and the dependence between subordinators is described via some Lévy copula. The main result of this paper is the series representation for our model, which can be efficiently used for simulation purposes.

Keywords

Lévy copula Time-changed Lévy process Subordination 

Mathematics Subject Classification (2010)

Primary 60G51 Secondary 62F99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ané T, Geman H (2000) Order flow, transaction clock, and normality of asset returns. J Financ 55(5):2259–2284Google Scholar
  2. Avanzi B, Cassar L, Wong B (2011) Modelling dependence in insurance claims processes with Lévy copulas. ASTIN Bulletin 41:575–609MathSciNetzbMATHGoogle Scholar
  3. Barndorff-Nielsen O, Lindner A (2004) Some aspects of Lévy copulas. SFB 386, Discussion paper 388Google Scholar
  4. Barndorff-Nielsen O, Pedersen J, Sato K (2001) Multivariate subordination, self-decomposability and stability. Advances in Applied Probability 33:160–187MathSciNetCrossRefzbMATHGoogle Scholar
  5. Barndorff-Nielsen OE, Shiryaev AN (2010) Change of Time and Change of Measure. World ScientificGoogle Scholar
  6. Barndorff-Nielsen O, Kent J, Sorensen M (1982) Normal variance-mean mixtures and z distributions. International statistical review 50:145–159MathSciNetCrossRefzbMATHGoogle Scholar
  7. Belomestny D, Panov V (2013) Estimation of the activity of jumps in time-changed Lévy models. Electron. J. Statist 7:2970–3003. doi: 10.1214/13-EJS870 CrossRefzbMATHGoogle Scholar
  8. Bertoin J (1998) Lévy processes. Cambridge University PressGoogle Scholar
  9. Bücher A, Vetter M (2013) Nonparametric inference on Lévy measures and copulas. The Annals of Statistics 41:1485–1515MathSciNetCrossRefzbMATHGoogle Scholar
  10. Carr P, Geman H, Madan D, Yor M (2003) Stochastic volatility for Lévy processes. Mathematical Finance 13:345–382MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cherny AS, Shiryaev AN (2002) Change of time and measure for Lévy processes. Lectures for the summer school “From Lévy processes to semimartingales - recent theoretical developments and applications to finance”Google Scholar
  12. Cherubini U, Lunga GD, Mulinacci S, Rossi P (2010) Fourier transform methods in finance. WileyGoogle Scholar
  13. Cherubini U, Lunga E, Vecchiato W (2004) Copula methods in finance. WileyGoogle Scholar
  14. Clark PK (1973) A subordinated stochastic process model with fixed variance for speculative prices. Econometrica 41:135–156MathSciNetCrossRefzbMATHGoogle Scholar
  15. Cohen S, Rosinski J (2007) Gaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes. Bernoulli 13:195–210. doi: 10.3150/07-BEJ6011 2307403 (2008a:60120)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Cont R, Tankov P (2004) Financial modelling with jump process. Chapman & Hall, CRC Press, UKzbMATHGoogle Scholar
  17. Eberlein E, Madan D (2010) On correlating Lévy processes. The Journal of Risk 13:3–16CrossRefGoogle Scholar
  18. Esmaeli H, Klüppelberg C (2010) Parameter estimation of a bivariate compound Poisson process. Insurance: mathematics and economics 47:224–233MathSciNetzbMATHGoogle Scholar
  19. Esmaeli H, Klüppelberg C (2011) Parametric estimation of a bivariate stable Lévy process. Journal of Multivariate Analysis 102:918–930MathSciNetCrossRefzbMATHGoogle Scholar
  20. Griffin JE, Walker SG (2011) Posterior simulation of normalized random measure mixtures. 241–259 20. Supplementary material available online. doi: 10.1198/jcgs.2010.08176 2816547 (2012c:62078)
  21. Grothe O, Hofert M (2015) Construction and sampling of Archimedean and nested Archimedean Lévy copulas. J. Multivariate Anal 138:182–198. doi: 10.1016/j.jmva.2014.12.004 3348841MathSciNetCrossRefzbMATHGoogle Scholar
  22. Grothe O, Nicklas S (2013) Vine constructions of Lévy copulas. J. Multivariate Anal 119:1–15. doi: 10.1016/j.jmva.2013.04.002 3061411MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hilber RNSCN, Winter C (2009) Numerical methods for Lévy processes. Finance Stoch 13:471–500. doi: 10.1007/s00780-009-0100-5 2519841 (2010i:60235)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ishwaran H, Zarepour M (2009) Series representations for multivariate generalized gamma processes via a scale invariance principle. Statist. Sinica 19:1665–1682. 2589203 (2010m:60169)MathSciNetzbMATHGoogle Scholar
  25. Joe H (1997) Multivariate models and dependence concepts. Chapman & HallGoogle Scholar
  26. Kalli M, Griffin JE, Walker SG (2011) Slice sampling mixture models. Stat. Comput 21:93–105. doi: 10.1007/s11222-009-9150-y 2746606MathSciNetCrossRefzbMATHGoogle Scholar
  27. Kallsen J, Tankov P (2006) Characterization of dependence of multidimensional Lévy processes using Lévy copulas. Journal of Multivariate Analysis 97:1551–1572MathSciNetCrossRefzbMATHGoogle Scholar
  28. Kelker D (1971) Infinite divisibility and variance mixtures of the normal distribution. The Annals of Mathematical Statistics 42:802–808MathSciNetCrossRefzbMATHGoogle Scholar
  29. Kolossiatis M, Griffin JE, Steel MFJ (2013) On Bayesian nonparametric modelling of two correlated distributions. Stat. Comput 23:1–15. doi: 10.1007/s11222-011-9283-7 3018346MathSciNetCrossRefzbMATHGoogle Scholar
  30. Leisen F, Lijoi A (2011) Vectors of two-parameter Poisson-Dirichlet processes. J. Multivariate Anal 102:482–495. doi: 10.1016/j.jmva.2010.10.008 2755010 (2011j:62074)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Leisen F, Lijoi A, Spanó D (2013) A vector of Dirichlet processes. Electron. J. Stat 7:62–90. doi: 10.1214/12-EJS764 3020414MathSciNetCrossRefzbMATHGoogle Scholar
  32. Luciano E, Semeraro P (2010) Multivariate time changes for Lévy asset models: characterization and calibration. J. Comput. Appl. Math 233:1937–1953. doi: 10.1016/j.cam.2009.08.119 2564029 (2011b:91280)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Monroe I (1978) Processes that can be embedded in Brownian motion. The Annals of Probability 6:42–56MathSciNetCrossRefzbMATHGoogle Scholar
  34. Nelsen R (2006) An introduction to copulas, 2nd Edn. SpringerGoogle Scholar
  35. Rosinski J (2001) Series representations of Lévy processes from the perspective of point processes. In: Barndorff-Nielsen O, Mikosch T, Resnick S (eds) Lévy processes: theory and applications. Springer Science+Business MediaGoogle Scholar
  36. Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University PressGoogle Scholar
  37. Schoutens W (2003) Lévy processes in finance. WileyGoogle Scholar
  38. Semeraro P (2008) A multivariate variance gamma model for financial applications. International journal of theoretical and applied finance 11:1–18MathSciNetCrossRefzbMATHGoogle Scholar
  39. Tankov P (2003) Dependence structure of spectrally positive multidimensional Lévy processes. PreprintGoogle Scholar
  40. Tankov P (2004) Lévy processes in finance: inverse problems and dependence modelling, PhD thesis. Ecole Polytechnique, PalaiseauGoogle Scholar
  41. Panov V, Sirotkin I (2015) Series representations for bivariate time-changed Lévy models. arXiv:1503.02214
  42. Veraart A, Winkel M (2010) Time change. In: Cont R (ed) Encyclpedia of quantitative finance. WileyGoogle Scholar
  43. Zhu W, Leisen F (2015) A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes. J. Nonparametr. Stat 27:89–105. doi: 10.1080/10485252.2014.966103 3304361MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations