Numerical Techniques in Lévy Fluctuation Theory

  • Naser M. Asghari
  • Peter den Iseger
  • Michael Mandjes
Open Access

DOI: 10.1007/s11009-012-9296-5

Cite this article as:
M. Asghari, N., den Iseger, P. & Mandjes, M. Methodol Comput Appl Probab (2014) 16: 31. doi:10.1007/s11009-012-9296-5


This paper presents a framework for numerical computations in fluctuation theory for Lévy processes. More specifically, with \(\bar X_t:= \sup_{0\le s\le t} X_s\) denoting the running maximum of the Lévy process Xt, the aim is to evaluate \({\mathbb P}(\bar X_t \le x)\) for t,x > 0. We do so by approximating the Lévy process under consideration by another Lévy process for which the double transform \({\mathbb E} e^{-\alpha \bar X_{\tau(q)}}\) is known, with τ(q) an exponentially distributed random variable with mean 1/q; then we use a fast and highly accurate Laplace inversion technique (of almost machine precision) to obtain the distribution of \(\bar X_t\). A broad range of examples illustrates the attractive features of our approach.


Lévy processes Fluctuation theory Wiener–Hopf Phase-type distributions Mathematical finance 

AMS 2000 Subject Classifications

60G51 65T99 

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Naser M. Asghari
    • 1
  • Peter den Iseger
    • 2
  • Michael Mandjes
    • 1
    • 3
    • 4
  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.ABN-AmroAmsterdamthe Netherlands
  3. 3.EurandomEindhoven University of TechnologyEindhoventhe Netherlands
  4. 4.CWIAmsterdamthe Netherlands

Personalised recommendations