Numerical Techniques in Lévy Fluctuation Theory

  • Naser M. Asghari
  • Peter den Iseger
  • Michael Mandjes
Open Access
Article
  • 547 Downloads

Abstract

This paper presents a framework for numerical computations in fluctuation theory for Lévy processes. More specifically, with \(\bar X_t:= \sup_{0\le s\le t} X_s\) denoting the running maximum of the Lévy process Xt, the aim is to evaluate \({\mathbb P}(\bar X_t \le x)\) for t,x > 0. We do so by approximating the Lévy process under consideration by another Lévy process for which the double transform \({\mathbb E} e^{-\alpha \bar X_{\tau(q)}}\) is known, with τ(q) an exponentially distributed random variable with mean 1/q; then we use a fast and highly accurate Laplace inversion technique (of almost machine precision) to obtain the distribution of \(\bar X_t\). A broad range of examples illustrates the attractive features of our approach.

Keywords

Lévy processes Fluctuation theory Wiener–Hopf Phase-type distributions Mathematical finance 

AMS 2000 Subject Classifications

60G51 65T99 

References

  1. Abate J, Whitt W (1995) Numerical inversion of Laplace transforms of probability distributions. ORSA J Comput 7:36–43CrossRefMATHGoogle Scholar
  2. Asmussen S (2003) Applied probability and queues. Springer, New YorkMATHGoogle Scholar
  3. Asmussen S, Rosiński J (2004) Approximations of small jumps of a Lévy process with a view towards simulation. J Appl Probab 38:482–493Google Scholar
  4. Asmussen S, Nerman O, Olsson M (1996) Fitting phase-type distributions via the EM algorithm. Scand J Statist 23:419–441MATHGoogle Scholar
  5. Asmussen S, Avram F, Pistorius M (2004) Russian and American put options under exponential phase-type Lévy models. Stoch Process Their Appl 109:79–111CrossRefMATHMathSciNetGoogle Scholar
  6. Asmussen S, Madan D, Pistorius M (2007) Pricing equity default swaps under an approximation to the CGMY Lévy model. J Comput Financ 11:79–93Google Scholar
  7. Bertoin J (1998) Lévy processes. Cambridge University Press, CambridgeMATHGoogle Scholar
  8. Carr P (1998) Randomization and the American Put. Rev Financ Stud 11:597–626CrossRefGoogle Scholar
  9. Cooley J, Tukey J (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301CrossRefMATHMathSciNetGoogle Scholar
  10. Cont R, Tankov P (2004) Financial modelling with Jump processes. Chapman & Hall/CRC Press, Boca RatonMATHGoogle Scholar
  11. den Iseger P (2006) Numerical transform inversion using Gaussian quadrature. Probab Eng Inf Sci 20:1–44MATHGoogle Scholar
  12. den Iseger P, Oldenkamp E (2006) Pricing guaranteed return rate products and discretely sampled Asian options. J Comput Financ 9:383–403Google Scholar
  13. Dȩbicki K, Mandjes M (2012) Lévy-driven queues. Surv Oper Res Manage Sci 17:15–37MathSciNetGoogle Scholar
  14. Dubner H, Abate J (1968) Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J ACM 15:115–123CrossRefMATHMathSciNetGoogle Scholar
  15. Feldmann A, Whitt W (1998) Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform Eval 31:245–279CrossRefGoogle Scholar
  16. Fu M (2007) Variance-Gamma and Monte Carlo. In: Fu J, Yen E (eds) Advances in mathematical finance. Birkhäuser, Basel, pp 21–35CrossRefGoogle Scholar
  17. Glynn P, Mandjes M (2011) Simulation-based computation of workload correlation function in a Levy-driven queue. J Appl Probab 48(1):114–130CrossRefMATHMathSciNetGoogle Scholar
  18. Harrison J (1977) The supremum distribution of a Lévy process with no negative jumps. Adv Appl Probab 9:417–422CrossRefMATHGoogle Scholar
  19. Harrison J (1985) Brownian motion and stochastic flow systems. Wiley, New YorkMATHGoogle Scholar
  20. Horváth A, Telek M (2002) Phfit: a general phase-type fitting tool. In: Proc. of 12th performance TOOLS, LNCS 2324, pp 82–91Google Scholar
  21. Kuznetsov A (2010) Wiener–Hopf factorization and distribution of extrema for a family of Lévy processes. Ann Appl Probab 20:1801–1830CrossRefMATHMathSciNetGoogle Scholar
  22. Kuznetsov A, Kyprianou A, Pardo J, van Schaik K (2011) A Wiener–Hopf Monte Carlo simulation technique for Lévy processes. Ann Appl Probab 21:2171–2190CrossRefMATHMathSciNetGoogle Scholar
  23. Kyprianou A (2006) Introductory lectures on fluctuations of Lévy processes with applications. Springer, BerlinMATHGoogle Scholar
  24. Lewis A, Mordecki E (2005) Wiener–Hopf factorization for Lévy processes having negative jumps with rational transforms. Submitted for publicationGoogle Scholar
  25. Lewis A, Mordecki E (2008) Wiener–Hopf factorization for Lévy processes having positive jumps with rational transforms. J Appl Probab 45:118–134CrossRefMATHMathSciNetGoogle Scholar
  26. Prabhu N (1998) Stochastic storage processes, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  27. Rogers L (2000) Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J Appl Probab 37:1173–1180CrossRefMATHMathSciNetGoogle Scholar
  28. Surya B (2008) Evaluating scale functions of spectrally negative Lévy processes. J Appl Probab 45:135–149CrossRefMATHMathSciNetGoogle Scholar
  29. Thümmler A, Buchholz P, Telek M (2006) A novel approach for phase-type fitting with the EM Algorithm. IEEE Trans Dep Sec Comp 3:245–258CrossRefGoogle Scholar
  30. Zolotarev V (1964) The first passage time of a level and the behaviour at infinity for a class of processes with independent increments. Theory Probab Appl 9:653–661CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Naser M. Asghari
    • 1
  • Peter den Iseger
    • 2
  • Michael Mandjes
    • 1
    • 3
    • 4
  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamthe Netherlands
  2. 2.ABN-AmroAmsterdamthe Netherlands
  3. 3.EurandomEindhoven University of TechnologyEindhoventhe Netherlands
  4. 4.CWIAmsterdamthe Netherlands

Personalised recommendations