Methodology and Computing in Applied Probability

, Volume 14, Issue 4, pp 1011–1032 | Cite as

Model Based Estimation of Geometric Characteristics of Open Foams

  • Katja SchladitzEmail author
  • Claudia Redenbach
  • Tetyana Sych
  • Michael Godehardt


Open cell foams are a class of modern materials which is interesting for a wide variety of applications and which is not accessible to classical materialography based on 2d images. 3d imaging by micro computed tomography is a practicable alternative. Analysis of the resulting volume images is either based on a simple binarisation of the image or on so-called cell reconstruction by image processing. The first approach allows to estimate mean characteristics like the mean cell volume using the typical cell of a random spatial tessellation as model for the cell shape. The cell reconstruction allows estimation of empirical distributions of cell characteristics. This paper summarises the theoretical background for the first method, in particular estimation of the intrinsic volumes and their densities from discretized data and models for random spatial tessellations. The accuracy of the estimation method is assessed using the dilated edge systems of simulated random spatial tessellations.


Image analysis 3D images Porous media Solid foams Intrinsic volumes  Spatial tessellation Voronoi tessellation Laguerre tessellation 

AMS 2000 Subject Classifications

Primary 60D05; Secondary 62H35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aurenhammer F (1987) A criterion for the affine equivalence of cell complexes in \({\mathbb R}^d\) and convex polyhedra in \({\mathbb R}^{d+1}\). Discrete Comput Geom 2:49–64MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bezrukov A, Bargieł M, Stoyan D (2002) Statistical analysis of simulated random packings of spheres. Part Part Syst Charact 19:111–118CrossRefGoogle Scholar
  3. Fan Z, Wu Y, Zhao X, Lu Y (2004) Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput Mater Sci 29:301–308CrossRefGoogle Scholar
  4. Fraunhofer ITWM, Department of Image Processing (2005) MAVI—modular algorithms for volume images.
  5. Godehardt M, Schladitz K (2006) Geometric characterisation of light weight composites using computer tomographic images. In: Proceedings of the 9th European NDT conference. BerlinGoogle Scholar
  6. Lautensack C (2007) Random Laguerre Tessellations. PhD thesis, Universität Karlsruhe, Verlag Lautensack, Weiler bei BingenGoogle Scholar
  7. Lautensack C (2008) Fitting three-dimensional Laguerre tessellations to foam structures. J Appl Stat 35(9):985–995MathSciNetzbMATHCrossRefGoogle Scholar
  8. Lautensack C, Giertzsch M, Godehardt M, Schladitz K (2008) Modelling a ceramic foam using locally adaptable morphology. J Microsc 230(3):396–404MathSciNetCrossRefGoogle Scholar
  9. Lautensack C, Sych T (2006) 3d image analysis of open foams using random tessellations. Image Anal Stereol 25:87–93CrossRefGoogle Scholar
  10. Lautensack C, Sych T (2008) A random Weaire–Phelan foam. In: 8th international conference on stereology and image analysis in materials science STERMAT 2008. Zakopane, PolandGoogle Scholar
  11. Lautensack C, Zuyev S (2008) Random Laguerre tessellations. Adv Appl Probab 40:630–650MathSciNetzbMATHCrossRefGoogle Scholar
  12. Lorz U, Hahn U (1993) Geometric characteristics of spatial Voronoi tessellations and planar sections. Tech. Rep. 93-05, Fachbereich Mathematik, TU Bergakademie Freiberg.
  13. Mecke J (1980) Palm methods for stationary random mosaics. In: Combinatorial principles in stochastic geometry. Work Collect., Erevan, pp 124–132Google Scholar
  14. Ohser J, Mücklich F (2000) Statistical analysis of microstructures in materials science. John Wiley & Sons, Chichester, New YorkzbMATHGoogle Scholar
  15. Ohser J, Schladitz K (2009) 3D images of materials and structures—processing and analysis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. Ohser J, Nagel W, Schladitz K (2009) Miles formulae for Boolean models observed on lattices. Image Anal Stereol 28(2):77–92MathSciNetzbMATHCrossRefGoogle Scholar
  17. Redenbach C (2009) Microstructure models for cellular materials. Comput Mater Sci 44:1397–1407CrossRefGoogle Scholar
  18. Schneider R (1993) Convex bodies. The Brunn–Minkowski theory. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  19. Schneider R, Weil W (2008) Stochastic and integral geometry. Springer, BerlinzbMATHCrossRefGoogle Scholar
  20. Serra J (1982) Image analysis and mathematical morphology, vol 1. Academic Press, LondonGoogle Scholar
  21. Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. Wiley, ChichesterzbMATHGoogle Scholar
  22. Sych T (2004) Estimation of geometric characteristics of foam structures. Master’s thesis, Universität Kaiserslautern/Fraunhofer ITWM, KaiserslauternGoogle Scholar
  23. Weaire D (ed) (1996) The Kelvin problem: foam structures of minimal surface area. Taylor & Francis, LondonzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Katja Schladitz
    • 1
    Email author
  • Claudia Redenbach
    • 2
  • Tetyana Sych
    • 1
  • Michael Godehardt
    • 1
  1. 1.Fraunhofer ITWM, Department Image ProcessingKaiserslauternGermany
  2. 2.Mathematics DepartmentTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations