Simulation and Estimation for the Fractional Yule Process



In this paper, we propose some representations of a generalized linear birth process called fractional Yule process (fYp). We also derive the probability distributions of the random birth and sojourn times. The inter-birth time distribution and the representations then yield algorithms on how to simulate sample paths of the fYp. We also attempt to estimate the model parameters in order for the fYp to be usable in practice. The estimation procedure is then tested using simulated data as well. We also illustrate some major characteristics of fYp which will be helpful for real applications.


Yule–Furry process Fractional calculus Mittag–Leffler Wright Poisson process Birth process 

AMS 2000 Subject Classifications

37A50 62M86 97K60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beghin L, Orsingher E (2009) Fractional poisson processes and related planar random motions. Electron J Probab 14(61):1790–1827MathSciNetMATHGoogle Scholar
  2. Cahoy DO (2007) Fractional poisson process in terms of alpha-stable densities. USAGoogle Scholar
  3. Cahoy DO, Uchaikin VV, Woyczynski WA (2010) Parameter estimation for fractional poisson processes. J Stat Plan Inference 140(11):3106–3120MathSciNetMATHCrossRefGoogle Scholar
  4. Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series, and products. Academic Press, New YorkMATHGoogle Scholar
  5. Harris T (2002) The theory of branching processes. Dover Phoenix, TorontoMATHGoogle Scholar
  6. Jumarie G (2001) Fractional master equation: non-standard analysis and liouville–riemann derivative. Chaos, Solitons Fractals 12(13):2577–2587MathSciNetMATHCrossRefGoogle Scholar
  7. Keiding N (1974) Estimation in the birth process. Biometrika 61(1):71–80MathSciNetMATHCrossRefGoogle Scholar
  8. Kendall DG (1966) Branching processes since 1873. J Lond Math Soc 41:385–406MathSciNetMATHCrossRefGoogle Scholar
  9. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier ScienceGoogle Scholar
  10. Laskin N (2003) Fractional poisson process. Commun Nonlinear Sci Numer Simul 8(3–4):201–213MathSciNetMATHCrossRefGoogle Scholar
  11. Mainardi F, Gorenflo R, Scalas E (2004) A fractional generalization of poisson processes. Vietnam J Math 32:53–64MathSciNetMATHGoogle Scholar
  12. Mainardi F, Gorenflo R, Vivoli A (2005) Renewal processes of mittag–leffler and wright type. Fract Calc Appl Anal 8:7–38MathSciNetMATHGoogle Scholar
  13. Mathai AM, Saxena RK, Haubold HJ (2010) The H-function, theory and applications. Springer, New YorkMATHGoogle Scholar
  14. McKendrick AG (1914) Studies on the theory of continuous probabilities with special reference to its bearing on natural phenomena of a progressive nature. Proc Lond Math Soc 2(13):401–416CrossRefGoogle Scholar
  15. Orsingher E, Polito F (2010) Fractional pure birth processes. Bernoulli 16(3):858–881MathSciNetMATHCrossRefGoogle Scholar
  16. Paris RB, Kaminski D (2001) Asymptotics and Mellin–Barnes integrals. Cambridge University PressGoogle Scholar
  17. Podlubny I (1999) Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications. Academic Press, San DiegoGoogle Scholar
  18. Repin ON, Saichev AI (2000) Fractional poisson law. Radiophys Quantum Electron 43(9):738–741MathSciNetCrossRefGoogle Scholar
  19. Uchaikin VV, Sibatov RT (2008) A fractional poisson process in a model of dispersive charge transport in semiconductors. Russ J Numer Anal Math Model 23(3):283–297MathSciNetMATHCrossRefGoogle Scholar
  20. Uchaikin VV, Cahoy DO, Sibatov RT (2008) Fractional processes: from poisson to branching one. Int J Bifurc Chaos 18(9):2717–2725MathSciNetMATHCrossRefGoogle Scholar
  21. Wang XT, Wen Z-X (2003) Poisson fractional processes. Chaos, Solitons Fractals 18(1):169–177MathSciNetMATHCrossRefGoogle Scholar
  22. Wang XT, Wen Z-X, Zhang S-Y, (2006) Fractional poisson process (ii). Chaos, Solitons Fractals 28(1):143–147 (2006)MathSciNetMATHCrossRefGoogle Scholar
  23. Wang XT, Zhang S-Y, Fan S (2007) Nonhomogeneous fractional poisson processes. Chaos, Solitons Fractals 31(1):236–241 (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. Waugh WAO (1970) Transformation of a birth process into a poisson process. J R Stat Soc Ser B 32(3):418–431MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Program of Mathematics and Statistics, College of Engineering and ScienceLouisiana Tech UniversityRustonUSA
  2. 2.Dipartimento di Scienze StatisticheSapienza University of RomeRomeItaly

Personalised recommendations