Advertisement

On a Generalized Chu–Vandermonde Identity

  • Stefano Favaro
  • Igor PrünsterEmail author
  • Stephen G. Walker
Article

Abstract

In the present paper we introduce a generalization of the well–known Chu–Vandermonde identity. In particular, by inductive reasoning, the identity is extended to a multivariate setup in terms of the fourth Lauricella function. The main interest in such generalizations derives from the species diversity estimation and, in particular, prediction problems in Genomics and Ecology within a Bayesian nonparametric framework.

Keywords

Bayesian nonparametrics Chu–Vandermonde identity Multivariate convolution Lauricella function Prediction Species diversity 

AMS 2000 Subject Classifications

05A19 33C20 62E15 62P10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appell P, Kampé de Fériet J (1926) Functions hypergéométriques et hypersphériques: polynomes d’hermite. Gauthier-Villars, ParisGoogle Scholar
  2. Comtet L (1974) Advanced combinatorics. Reidel, BostonzbMATHCrossRefGoogle Scholar
  3. Exton H (1976) Multiple hypergeometric functions and application. Ellis Horwood, ChichesterGoogle Scholar
  4. Favaro S, Prünster I, Walker SG (2010) On a class of random probability measures with general predictive structure. Scand J Statist. doi: 10.1111/j.1467-9469.2010.00702.x Google Scholar
  5. Gradshteyn LS, Ryzhik LM (2000) Table of integrals, series, and products. Academic, New YorkzbMATHGoogle Scholar
  6. Hjort NL, Holmes CC, Müller P, Walker SG (eds) (2010) Bayesian nonparametrics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. James LF (2005) Functionals of Dirichlet processes, the Cifarelli–Regazzini identity and beta-gamma processes. Ann Stat 33:647–660zbMATHCrossRefGoogle Scholar
  8. Lauricella G (1893) Sulle funzioni ipergeometriche a più variabili. Rend Circ Mat Palermo 7:111–158CrossRefGoogle Scholar
  9. Lijoi A, Mena RH, Prünster I (2007a) Bayesian nonparametric estimation of the probability of discovering a new species. Biometrika 94:769–786MathSciNetzbMATHCrossRefGoogle Scholar
  10. Lijoi A, Mena RH, Prünster I (2007b) A Bayesian nonparametric method for prediction in EST analysis. BMC Bioinformatics 8:339CrossRefGoogle Scholar
  11. Lijoi A, Prünster I, Walker SG (2008) Bayesian nonparametric estimators derived from conditional Gibbs structures. Ann Appl Probab 18:1519–1547MathSciNetzbMATHCrossRefGoogle Scholar
  12. Lijoi A, Regazzini E (2004) Means of a Dirichlet process and multiple hypergeometric functions. Ann Probab 32:1469–1495MathSciNetzbMATHCrossRefGoogle Scholar
  13. Müller P, Quintana FA (2004) Nonparametric Bayesian data analysis. Stat Sci 19:95–110zbMATHCrossRefGoogle Scholar
  14. Navarrete C, Quintana FA, Müller P (2008) Some issues on nonparametric Bayesian modeling using species sampling models. Stat Model 8:3–21MathSciNetCrossRefGoogle Scholar
  15. Petrone S, Guindani M, Gelfand AE (2009) Hybrid Dirichlet mixture models for functional data. J R Stat Soc Ser B 71:755–782MathSciNetCrossRefGoogle Scholar
  16. Pitman J (2006) Combinatorial stochastic processes. Ecole d’Eté de Probabilités de Saint-Flour XXXII. In: Lecture notes in mathematics, vol 1875. Springer, New YorkGoogle Scholar
  17. Quintana FA (2006) A predictive view of Bayesian clustering. J Stat Plan Inference 136:2407–2429MathSciNetzbMATHCrossRefGoogle Scholar
  18. Regazzini E (1998) An example of the interplay between statistics and special functions. In: Tricomi’s ideas and contemporary applied mathematics. Accademina Nazionale dei Lincei, Rome, pp 303–320Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stefano Favaro
    • 1
  • Igor Prünster
    • 2
    Email author
  • Stephen G. Walker
    • 3
  1. 1.Dipartimento di Statistica e Matematica ApplicataUniversità degli Studi di Torino and Collegio Carlo AlbertoTorinoItaly
  2. 2.Dipartimento di Statistica e Matematica ApplicataUniversità degli Studi di Torino, ICER and Collegio Carlo AlbertoTorinoItaly
  3. 3.Institute of Mathematics, Statistics and Actuarial ScienceUniversity of KentCanterburyUK

Personalised recommendations