Methodology and Computing in Applied Probability

, Volume 13, Issue 3, pp 449–473 | Cite as

Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications



We introduce a novel algorithm (JEA) to simulate exactly from a class of one-dimensional jump-diffusion processes with state-dependent intensity. The simulation of the continuous component builds on the recent Exact Algorithm (Beskos et al., Bernoulli 12(6):1077–1098, 2006a). The simulation of the jump component instead employs a thinning algorithm with stochastic acceptance probabilities in the spirit of Glasserman and Merener (Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127, 2004). In turn JEA allows unbiased Monte Carlo simulation of a wide class of functionals of the process’ trajectory, including discrete averages, max/min, crossing events, hitting times. Our numerical experiments show that the method outperforms Monte Carlo methods based on the Euler discretization.


Jump diffusion Simulation Exact Algorithms Barrier option pricing 

AMS 2000 Subject Classifications

Primary 60K30; Secondary 65C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beskos A, Roberts GO (2005) Exact simulation of diffusions. Ann Appl Probab 15(4):2422–2444MATHCrossRefMathSciNetGoogle Scholar
  2. Beskos A, Papaspiliopoulos O, Roberts GO (2006a) Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6):1077–1098MATHCrossRefMathSciNetGoogle Scholar
  3. Beskos A, Papaspiliopoulos O, Roberts GO, Fearnhead P (2006b) Exact and efficient likelihood based inference for discretely observed diffusions (with discussion). J R Stat Soc Ser B Stat Methodol 68(3):333–382MATHCrossRefMathSciNetGoogle Scholar
  4. Beskos A, Papaspiliopoulos O, Roberts GO (2008) A new factorisation of diffusion measure and sample path reconstruction. Methodology and Computing in Applied Probability 10(1):85–104MATHCrossRefMathSciNetGoogle Scholar
  5. Caines PE, Zhang JF (1995) On adaptive control for jump parameter systems via nonlinear filtering. SIAM J Control Optim 33:1758–1777MATHCrossRefMathSciNetGoogle Scholar
  6. Cariboni J, Schoutens W (2004) Pricing credit default swaps under lévy models.
  7. Casella B (2006) Exact monte carlo simulation of diffusion and jump-diffusion processes with financial applications. PhD thesis, Università Commerciale L. Bocconi, Istituto Metodi QuantitativiGoogle Scholar
  8. Casella B, Roberts GO (2007) Exact monte carlo simulation of killed diffusions. Adv Appl Probab 41:273–291Google Scholar
  9. Das S (2002) The surprise element: jumps in interest rates. J Econom 106:27–65MATHCrossRefGoogle Scholar
  10. Devroye L (1986) Nonuniform random variate generation. Springer, New YorkGoogle Scholar
  11. Doob JL (1949) Heuristic approach to the Kolmogorov-Smirnov theorems. Ann Math Stat 20:393–403MATHCrossRefMathSciNetGoogle Scholar
  12. Giesecke K (2004) Credit risk modeling and evaluation: an introduction. In: Credit risk: models and management. Risk books, vol 2. D. ShimkoGoogle Scholar
  13. Giraudo M, Sacerdote L (1997) Jump-diffusion processes as models for neuronal activity. Biosystems 40:75–82CrossRefGoogle Scholar
  14. Glasserman P, Merener N (2004) Convergence of a discretization scheme for jump-diffusion processes with state-dependent intensities. Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127. Stochastic analysis with applications to mathematical financeMATHCrossRefMathSciNetGoogle Scholar
  15. Gobet E (2000) Weak approximation of killed diffusion using Euler schemes. Stoch Process Appl 87(2):167–197MATHCrossRefMathSciNetGoogle Scholar
  16. Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes. North-Holland mathematical library, vol 24, 2nd edn. North-Holland, AmsterdamMATHGoogle Scholar
  17. Johannes M (2004) The statistical and economic role of jumps in continuous-time interest rate models. J Finance 59(1):227–260CrossRefGoogle Scholar
  18. Johannes M, Kumar R, Polson N (1999) State dependent jump models: how do us equity indices jump? Working paper. University of ChicagoGoogle Scholar
  19. Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus. In: Graduate texts in mathematics, vol 113. 2nd edn. Springer, New YorkGoogle Scholar
  20. Merton RC (1976) Option pricing when undrlying stock returns are discontinuous. J Financ Econ 3:125–144MATHCrossRefGoogle Scholar
  21. Metwally S, Atiya A (2002) Using brownian bridge for fast simulation of jump-diffusion processes and barrier options. J Deriv 10:43–54CrossRefGoogle Scholar
  22. Pelucchetti S (2008) An analysis of the efficiency of the exact algorithm. PhD thesis, Università Commerciale L. Bocconi, Istituto Metodi QuantitativiGoogle Scholar
  23. Platen E, Rebolledo R (1985) Weak convergence of semimartingales and discretisation methods. Stoch Process Appl 20(1):41–58MATHCrossRefMathSciNetGoogle Scholar
  24. Revuz D, Yor M (1991) Continuous Martingales and Brownian motion. Springer, New YorkMATHGoogle Scholar
  25. Zhou G (2001) The term structure of credit spreads with jump risk. J Bank Financ 25:504–531CrossRefGoogle Scholar
  26. Zhu SC (1999) Stochastic jump-diffusion process for computing medial axes in markov random fields. IEEE Trans Pattern Anal Mach Intell 21:1158–1169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of WarwickCoventryUK

Personalised recommendations