The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model

  • Aniello Buonocore
  • Luigia Caputo
  • Enrica Pirozzi
  • Luigi M. Ricciardi
Article

Abstract

Motivated by some unsolved problems of biological interest, such as the description of firing probability densities for Leaky Integrate-and-Fire neuronal models, we consider the first-passage-time problem for Gauss-diffusion processes along the line of Mehr and McFadden (J R Stat Soc B 27:505–522, 1965). This is essentially based on a space-time transformation, originally due to Doob (Ann Math Stat 20:393–403, 1949), by which any Gauss-Markov process can expressed in terms of the standard Wiener process. Starting with an analysis that pinpoints certain properties of mean and autocovariance of a Gauss-Markov process, we are led to the formulation of some numerical and time-asymptotically analytical methods for evaluating first-passage-time probability density functions for Gauss-diffusion processes. Implementations for neuronal models under various parameter choices of biological significance confirm the expected excellent accuracy of our methods.

Keywords

Gaussian process Diffusion LIF neuronal models Numerical approximations Asymptotics 

PACS

02.50Ey 02.50.Ga 02.60.Jh 

Mathematics Subject Classifications (2000)

60J60 60J70 6015 92C20 

AMS 2000 Subject Classifications

60J60 60G15 60J70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams J (1984) Rump crossings for Slepian’s process. IEEE Trans Inf Theory 30(3):574–575MATHCrossRefMathSciNetGoogle Scholar
  2. Anderssen R, De Hoog F, Weiss R (1973) On the numerical solution of Brownian motion processes. J Appl Probab 10:409–418MATHCrossRefGoogle Scholar
  3. Buonocore A, Caputo L, Pirozzi E (2008) On the evaluation of firing densities for periodically driven neuron models. Math Biosci 214:122–133MATHCrossRefMathSciNetGoogle Scholar
  4. Buonocore A, Nobile A, Ricciardi L (1987) A new integral equation for the evaluation of first-passage-time probability densities. Adv Appl Probab 19:784–800MATHCrossRefMathSciNetGoogle Scholar
  5. Daniels H (1969) The minimum of a stationary Markov process superimposed on a U-shaped trend. J Appl Probab 6:399–408MATHCrossRefMathSciNetGoogle Scholar
  6. Darling D, Siegert A (1953) The first passage time problem for a continuous Markov process. Ann Math Stat 24:624–639MATHCrossRefMathSciNetGoogle Scholar
  7. Di Crescenzo A, Nobile A (1995) Diffusion approssimation to queueing systems with time–dependent arrival and service rates. Queueing Syst 19:41–62MATHCrossRefGoogle Scholar
  8. Di Crescenzo A, Giorno V, Nobile A, Ricciardi L (1997) On first-passage-time and transition densities for strongly symmetric diffusion processes. Nagoya Math J 145:143–161MATHMathSciNetGoogle Scholar
  9. Di Nardo E, Nobile A, Pirozzi ELR (2001) A computational approach to first-passage-time problems for Gauss-Markov processes. Adv Appl Probab 33:453–482MATHCrossRefGoogle Scholar
  10. Doob J (1949) Heuristic approach to the Kolmogorov–Smirnov theorems. Ann Math Stat 20:393–403MATHCrossRefMathSciNetGoogle Scholar
  11. Durbin J (1971) Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J Appl Probab 8:431–453MATHCrossRefMathSciNetGoogle Scholar
  12. Durbin J (1985) The first-passage density of a continuous Gauss process to a general boundary. J Appl Probab 22:99–122MATHCrossRefMathSciNetGoogle Scholar
  13. Favella L, Reineri M, Ricciardi L, Sacerdote L (1982) First-passage-time problems and some related computational methods. Cybernet Syst 13:95–128MATHCrossRefMathSciNetGoogle Scholar
  14. Fortet R (1943) Les fonctions aléatoires du type de Markoff associées à certaines équations lineáires aux dérivées partialles du type parabolique. J Math Pures Appl 22:177–243MATHMathSciNetGoogle Scholar
  15. Gerstein G, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68CrossRefGoogle Scholar
  16. Giorno V, Nobile A, Ricciardi L (1986a) On some diffusion approximations to queueing systems. Adv Appl Probab 18(4):991–1014MATHCrossRefMathSciNetGoogle Scholar
  17. Giorno V, Nobile A, Ricciardi L, Sacerdote L (1986b) Some remarks on the Rayleigh process. J Appl Probab 23(2):398–408MATHCrossRefMathSciNetGoogle Scholar
  18. Giorno V, Nobile A, Ricciardi L (1987) On some time-non-homogeneous diffusion approximations to queueing systems. Adv Appl Probab 19(4):974–994MATHCrossRefMathSciNetGoogle Scholar
  19. Giorno V, Nobile A, Ricciardi L (1988) A new approach to the construction of first–passage–time densities. In: Trappl R (ed) Cybernetics and Systems. Kluwer, Dordrecht, pp 375–381Google Scholar
  20. Giorno V, Nobile A, Ricciardi L (1990) On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv Appl Probab 22(4):883–914MATHCrossRefMathSciNetGoogle Scholar
  21. Giorno V, Nobile A, Pirozzi E, Ricciardi L (2006) On the construction of first-passage-time densities for diffusion processes. SCMJ 64(2):277–298MATHMathSciNetGoogle Scholar
  22. Giorno V, Nobile A, Ricciardi L, Sato S (1989) On the evaluation of first-passage-time probability densities via non-singular integral equations. Adv Appl Probab 21(1):20–36MATHCrossRefMathSciNetGoogle Scholar
  23. Gutiérrez Jáimez R, Román P, Torres Ruiz F (1995) A note on the Volterra integral equation for the first-passage time probability density. J Appl Probab 32:635–648MATHCrossRefMathSciNetGoogle Scholar
  24. Lánský P (1997) Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics. Phys Rev E 55(2):2040–2043CrossRefGoogle Scholar
  25. Mehr C, McFadden J (1965) Certain properties of Gaussian processes and their first passage time. J R Stat Soc B 27:505–522MATHMathSciNetGoogle Scholar
  26. Nobile A, Pirozzi E, Ricciardi L (2006) On the two-boundary first-passage-time problem for Gauss-Markov processes. SCMJ 64(2):421–442MATHMathSciNetGoogle Scholar
  27. Nobile A, Pirozzi E, Ricciardi L (2007) On the estimation of first-passage time densities for a class of Gauss-Markov processes. LNCS 4739:146–153Google Scholar
  28. Redner S (2001) A guide to first-passage processes. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  29. Ricciardi L (1976) On the transformation of diffusion processes into the Wiener process. J Math Anal Appl 54:185–199MATHCrossRefMathSciNetGoogle Scholar
  30. Ricciardi L, Lánský P (2002) Diffusion models of neuron activity. In: Arbib M (ed) The handbook of brain theory and neural networks. MIT, Cambridge, pp 343–348Google Scholar
  31. Ricciardi L, Di Crescenzo A, Giorno V, Nobile A (1999) An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math Jpn 50:247–322MATHGoogle Scholar
  32. Schindler M, Talkner P, Hänggi P (2004) Firing times statistics for driven neuron models: analytic expressions versus numerics. Phys Rev Lett 93(4):048102-1–048102-4CrossRefGoogle Scholar
  33. Schindler M, Talkner P, Hänggi P (2005) Escape rates in periodically driven Markov processes. Phys A 351:40–50CrossRefGoogle Scholar
  34. Siegert A (1951) On the first passage time probability problem. Phys Rev 81:617–623MATHCrossRefMathSciNetGoogle Scholar
  35. Stein R (1965) A theoretical analiysis of neuronal variability. Biophys J 5:173–194CrossRefGoogle Scholar
  36. Stein R (1967) Some models of neuronal variability. Biophys J 7:37–68CrossRefGoogle Scholar
  37. Tuckwell H (1989) Stochastic processes in the neurosciences. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aniello Buonocore
    • 1
  • Luigia Caputo
    • 2
  • Enrica Pirozzi
    • 1
  • Luigi M. Ricciardi
    • 1
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di MatematicaUniversità di TorinoTorinoItaly

Personalised recommendations