Advertisement

Importance and Sensitivity Analysis in Dynamic Reliability

  • Robert Eymard
  • Sophie MercierEmail author
  • Michel Roussignol
Article

Abstract

In dynamic reliability, the evolution of a system is governed by a piecewise deterministic Markov process, which is characterized by different input data. Assuming such data to depend on some parameter p ∈ P, our aim is to compute the first-order derivative with respect to each p ∈ P of some functionals of the process, which may help to rank input data according to their relative importance, in view of sensitivity analysis. The functionals of interest are expected values of some function of the process, cumulated on some finite time interval [0,t], and their asymptotic values per unit time. Typical quantities of interest hence are cumulated (production) availability, or mean number of failures on some finite time interval and similar asymptotic quantities. The computation of the first-order derivative with respect to p ∈ P is made through a probabilistic counterpart of the adjoint state method, from the numerical analysis field. Examples are provided, showing the good efficiency of this method, especially in case of a large P.

Keywords

Dynamic reliability Sensitivity analysis Importance factor Piecewise deterministic Markov process Chapman–Kolmogorov equation 

AMS 2000 Subject Classification

60K20 90B25 74S10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boxma O, Kaspi H, Kella O, Perry D (2005) On/off storage systems with state-dependent input, output, and switching rates. Probab Eng Inf Sci 19(1):1–14zbMATHCrossRefMathSciNetGoogle Scholar
  2. Cao X-R, Chen H-F (1997) Perturbation realization, potentials, and sensitivity analysis of Markov processes. IEEE Trans Automat Contr 42(10):1382–1393zbMATHCrossRefMathSciNetGoogle Scholar
  3. Cartan H (1967) Calcul différentiel. Hermann, PariszbMATHGoogle Scholar
  4. Chiquet J, Limnios N (2008) A method to compute the transition function of a piecewise deterministic Markov process with application to reliability. Stat Probab Lett 78:1397–1403zbMATHCrossRefMathSciNetGoogle Scholar
  5. Cocozza-Thivent C, Eymard R, Mercier S (2006a) A finite-volume scheme for dynamic reliability models. IMA J Numer Anal 26(3):446–471zbMATHCrossRefMathSciNetGoogle Scholar
  6. Cocozza-Thivent C, Eymard R, Mercier S, Roussignol M (2006b) Characterization of the marginal distributions of Markov processes used in dynamic reliability. J Appl Math Stoch Anal 1:1–18 (Art. ID 92156)CrossRefMathSciNetGoogle Scholar
  7. Costa O, Dufour F (1999) Stability of piecewise-deterministic Markov processes. SIAM J Control Optim 37(5):1483–1502zbMATHCrossRefMathSciNetGoogle Scholar
  8. Costa O, Dufour F (2003) On the Poisson equation for piecewise-deterministic Markov processes. SIAM J Control Optim 42(3):985–1001zbMATHCrossRefMathSciNetGoogle Scholar
  9. Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J R Stat Soc Ser B 46(3):353–388 (with discussion)zbMATHGoogle Scholar
  10. Davis MHA (1993) Markov models and optimization, monographs on statistics and applied probability, vol 49. Chapman and Hall, LondonGoogle Scholar
  11. Down D, Meyn SP, Tweedie RL (1995) Exponential and uniform ergodicity of Markov processes. Ann Probab 23(4):1671–1691zbMATHCrossRefMathSciNetGoogle Scholar
  12. Eymard R, Mercier S, Prignet A (2008) An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic markov processes. J Comput Appl Math 222:293–323 (Available online 1 Nov 2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Gandini A (1990) Importance and sensitivity analysis in assessing system reliability. IEEE Trans Reliab 39(1):61–70zbMATHCrossRefGoogle Scholar
  14. Konstantopoulos T, Last G (1999) On the use of Lyapunov function methods in renewal theory. Stoch Process Appl 79(1):165–178zbMATHCrossRefMathSciNetGoogle Scholar
  15. Lions J-L (1968) Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Avant propos de P. Lelong. Dunod, PariszbMATHGoogle Scholar
  16. Mercier S (2007) Discrete random bounds for general random variables and applications to reliability. Eur J Oper Res 177(1):378–405zbMATHCrossRefMathSciNetGoogle Scholar
  17. Mercier S, Roussignol M (2008) Sensitivity estimates in dynamic reliability. In: Bedford T, Quigley J, Walls L, Alkali B, Daneshkhah A, Hardman G (eds) Advances in mathematical modeling for reliability. IOS, Amsterdam, pp. 208–216Google Scholar
  18. Meyn SP, Tweedie RL (1993a) Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv Appl Probab 25(3):487–517zbMATHCrossRefMathSciNetGoogle Scholar
  19. Meyn SP, Tweedie RL (1993b) Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv Appl Probab 25(3):518–548zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert Eymard
    • 1
  • Sophie Mercier
    • 1
    Email author
  • Michel Roussignol
    • 1
  1. 1.Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050)Université Paris-EstMarne-la-ValléeFrance

Personalised recommendations