Two New Mixture Models Related to the Inverse Gaussian Distribution

  • Samuel Kotz
  • Víctor Leiva
  • Antonio Sanhueza


This article presents a new family of logarithmic distributions to be called the sinh mixture inverse Gaussian model and its associated life distribution referred as the extended mixture inverse Gaussian model. Specifically, the density, distribution function, and moments are developed for the sinh mixture inverse Gaussian distribution. Next, the extended mixture inverse Gaussian distribution is characterized. A graphical analysis of the densities of the new models is also provided. In addition, a lifetime analysis is presented for the extended mixture inverse Gaussian distribution. Finally, an example with a real data set is given to illustrate the methodology, which indicates that the new models result in a better fit to the data than some other well-known distributions.


Birnbaum-Saunders distribution Goodness-of-fit Likelihood methods Moments Sinh-normal distribution 

AMS 2000 Subject Classifications

Primary 60E05; Secondary 62N05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balakrishnan N, Leiva V, Sanhueza A, Cabrera E (2009) Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics (in press).
  2. Bhattacharyya GK, Fries A (1982) Fatigue failure models: Birnbaum-Saunders versus inverse Gaussian. IEEE Trans Reliab 31:439–440zbMATHCrossRefGoogle Scholar
  3. Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327zbMATHCrossRefMathSciNetGoogle Scholar
  4. Chhikara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology, and applications. Marcel Dekker, New YorkzbMATHGoogle Scholar
  5. Desmond AF (1986) On the relationship between two fatigue-life models. IEEE Trans Reliab 35:167–169zbMATHCrossRefGoogle Scholar
  6. Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman, LondonzbMATHGoogle Scholar
  7. Folks JL, Chhikara RS (1987) The inverse Gaussian distribution and its statitical application—a review. J R Stat Soc Ser B 40:263–289MathSciNetGoogle Scholar
  8. Galton F (1879) The geometric mean, in vital and social statistics. Proc R Soc 29:365–367CrossRefGoogle Scholar
  9. Gibrat R (1930) Les inegalités économiques. Sirey, ParisGoogle Scholar
  10. Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series and products. Academic, New YorkzbMATHGoogle Scholar
  11. Gupta RC, Akman HO (1995) On the reliability studies of the weighted inverse Gaussian model. J Stat Plan Inference 48:69–83zbMATHCrossRefMathSciNetGoogle Scholar
  12. Jörgensen B, Seshadri V, Whitmore G (1991) On the mixture of the inverse Gaussian distribution with its complementary reciprocal. Scand J Statist 18:77–89zbMATHMathSciNetGoogle Scholar
  13. Johnson NL (1949) Systems of frequency curves generated by methods of translation. Biometrika 36:149–176zbMATHMathSciNetGoogle Scholar
  14. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New YorkzbMATHGoogle Scholar
  15. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley, New YorkzbMATHGoogle Scholar
  16. Kapteyn J, van Uven MJ (1916) Skew frequency curves in biology and statistics. Hoitsema Brothers, GroningenGoogle Scholar
  17. Kanefuji K, Iwase K (1996) Exponential inverse Gaussian distribution. Comput Stat 11:315–326zbMATHMathSciNetGoogle Scholar
  18. Kotz S, Campbell BR, Balakrishnan N, Vidakovic B (eds) (2005) Encyclopedia of statistics sciences, vol 4. Wiley, New YorkGoogle Scholar
  19. Leiva V, Hernández H, Riquelme M (2006) A new package for the Birnbaum-Saunders distribution. R News 6:35–40. Google Scholar
  20. Leiva V, Barros M, Paula GA, Galea M (2007) Influence diagnostics in log-Birnbaum-Saunders regression models with censored data. Comput Stat Data Anal 51:5694–5707zbMATHCrossRefMathSciNetGoogle Scholar
  21. Leiva V, Sanhueza A, Silva A, Galea M (2008a) A new three-parameter extension to the inverse Gaussian distribution. Stat Probab Lett 78:1266–1273zbMATHCrossRefMathSciNetGoogle Scholar
  22. Leiva V, Hernández H, Sanhueza A (2008b) An R package for a general class of inverse Gaussian distributions. J Stat Softw 26(4).
  23. Marshall AW, Olkin I (2007) Life distributions. Springer, New YorkzbMATHGoogle Scholar
  24. McAlister D (1879) The law of the geometric mean. Proc R Soc 29:367–376CrossRefGoogle Scholar
  25. McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  26. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Google Scholar
  27. Rieck JR, Nedelman JR (1991) A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33:51–60zbMATHCrossRefGoogle Scholar
  28. Sanhueza A, Leiva V, Balakrishnan N (2008a) A new class of inverse Gaussian type distributions. Metrika 68:31–49CrossRefMathSciNetGoogle Scholar
  29. Sanhueza A, Leiva V, Balakrishnan N (2008b) The generalized Birnbaum-Saunders distribution and its theory, methodology and application. Commun Stat Theory Methods 37:645–670zbMATHCrossRefMathSciNetGoogle Scholar
  30. Saunders SC (1974) A family of random variables closed under reciprocation. J Am Stat Assoc 69:533–539zbMATHCrossRefGoogle Scholar
  31. Saunders SC (2007) Reliability, life testing and prediction of services lives. Springer, New YorkGoogle Scholar
  32. Schrödinger E (1915) Zur theorie der fall-und steigversuche und teilchen mit Brownscher bewegung. Phys Z 16:289–295Google Scholar
  33. Seshadri V (1993) The inverse Gaussian distribution: a case study in exponential families. Claredon, New YorkGoogle Scholar
  34. Seshadri V (1999) The inverse Gaussian distribution: statistical theory and applications. Springer, New YorkzbMATHGoogle Scholar
  35. Tweedie MCK (1957) Statistical properties of the inverse Gaussian distribution I. Ann Math Stat 28:362–377CrossRefMathSciNetGoogle Scholar
  36. Wicksell SD (1917) On the genetic theory of frequency. Arkiv för Matematik, Astronomi och Fysik 12:1–56Google Scholar
  37. Whittaker ET, Watson GN (1927) A course of modern analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2003

Authors and Affiliations

  1. 1.Department of Engineering Management and Systems EngineeringThe George Washington UniversityWashingtonUSA
  2. 2.Departamento de EstadísticaUniversidad de ValparaísoValparaísoChile
  3. 3.Departamento de Matematica y EstadísticaUniversidad de La FronteraTemucoChile

Personalised recommendations