Advertisement

Molecular Biology

, Volume 39, Issue 5, pp 661–674 | Cite as

Plastid RNA Polymerases

  • E. A. Lysenko
  • V. V. Kuznetsov
Reviews

Abstract

Plastids have an interesting transcription machinery that makes it possible to study the interplay of mono- and multisubunit RNA polymerases (RNAPs) during intricate organelle biogenesis, requiring the concerted expression of genes located in different compartments of the cell. The past decade has been marked by a breakthrough in studies of chloroplast RNAPs. Nucleus-encoded monosubunit RNAP (NEP) was discovered; a nuclear gene family was found to code for σ subunits of plastid-encoded multisubunit RNAP (PEP); mutants knocked-out in PEP subunit genes were obtained; a reorganization of PEP was observed during plastid biogenesis; and a hypothesis was advanced to describe the division of functions between NEP and PEP. The review considers recent data on the organization, functions, and evolution of plastid RNAPs.

Key words

chloroplast RNA polymerase transcription gene expression evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Shematorova E.K., Shpakovsky G.V. 2002. Structure and functions of eukaryotic DNA-dependent RNA polymerase I. Mol. Biol. 36, 1–17.CrossRefGoogle Scholar
  2. 2.
    Pfannschmidt T., Link G. 1994. Separation of two classes plastid DNA-dependent RNA polymerases that are differently expressed in mustard. Plant Mol. Biol. 25, 69–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Rajasekhar V.K., Sun E., Meeker R., Wu B.W., Tewari K.K. 1991. Highly purified pea chloroplast RNA polymerase transcribes both rRNA and mRNA genes. Eur. J. Biochem. 195, 215–228.CrossRefPubMedGoogle Scholar
  4. 4.
    Suzuki J.Y., Ytterberg J., Beardslee T.A., Allison L.A., Wijk K.J., Maliga P. 2004. Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant J. 40, 164–172.CrossRefPubMedGoogle Scholar
  5. 5.
    Allison L.A., Simon L.D., Maliga P. 1996. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 15, 2802–2809.PubMedGoogle Scholar
  6. 6.
    Serino G., Maliga P. 1998. RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus encoded plastid enzyme. Plant Physiol. 117, 1165–1170.CrossRefPubMedGoogle Scholar
  7. 7.
    DeSantis-Maciossek G., Kofer W., Bock A., Rudiger W., Koop H.U., Herrmann R.G. 1999. Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: Molecular biology, biochemistry and ultrastructure. Plant J. 18, 477–489.Google Scholar
  8. 8.
    Wolfe K.H., Morden C.W., Palmer J.D. 1992. Function and evolution of a minimum plastid genome from a nonphotosynthetic parasitic plant. Proc. Natl. Acad. Sci. USA. 89, 10648–10652.PubMedGoogle Scholar
  9. 9.
    Berg S., Krupinska K., Krause K. 2003. Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition. Planta. 218, 135–142.CrossRefPubMedGoogle Scholar
  10. 10.
    Krause K., Berg S., Krupinska K. 2003. Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta. 216, 815–823.PubMedGoogle Scholar
  11. 11.
    Sakai A., Saito C., Inada N., Kuroiwa T. 1998. Transcriptional activities of the chloroplast-nuclei and proplastid-nuclei isolated from tobacco exhibit different sensitivities to tagetitoxin: Implication of the presence of distinct RNA polymerases. Plant Cell Physiol. 39, 928–934.PubMedGoogle Scholar
  12. 12.
    Bergsland K.J., Haselkorn R. 1991. Evolutionary relationships among eubacteria, cyanobacteria, and chloroplasts: Evidence from the rpoC1 gene of Anabaena sp. strain PCC7120. J. Bacteriol. 173, 3446–3455.PubMedGoogle Scholar
  13. 13.
    Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803: 2. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136.PubMedGoogle Scholar
  14. 14.
    Sugiura Ch., Kobayashi Yu., Aoki S., Sugita Ch., Sugita M. 2003. Complete chloroplast DNA sequence of the moss Physcomitrella patens: Evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res. 31, 5324–5331.CrossRefPubMedGoogle Scholar
  15. 15.
    Minakhin L., Bhagat S., Brunning A., Campbell E.A., Darst S.A., Ebright R.H., Severinov K. 2001. Bacterial RNA polymerase subunit ω and eucaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl. Acad. Sci. USA. 98, 892–897.CrossRefPubMedGoogle Scholar
  16. 16.
    Hu J., Bogorad L. 1990. Maize chloroplast RNA polymerase: The 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc. Natl. Acad. Sci. USA. 87, 1531–1535.PubMedGoogle Scholar
  17. 17.
    Hu J., Troxler R.F., Bogorad L. 1991. Maize chloroplast RNA polymerase: The 78-kilodalton polypeptide is encoded by the plastidic rpoC1 gene. Nucleic Acids Res. 19, 3431–3434.PubMedGoogle Scholar
  18. 18.
    Severinov K., Mustaev A., Kukarin A., Muzzin O., Bass I., Darst S.A., Goldfarb A. 1996. Structural modules of the large subunits of RNA polymerase. J. Biol. Chem. 271, 27969–27974.PubMedGoogle Scholar
  19. 19.
    Chen Z., Muthukrishnan S., Liang G.H., Schertz K.F., Hart G.E. 1993. A chloroplast DNA deletion located in RNA polymerase gene rpoC2 in CMS lines of sorghum. Mol. Gen. Genet. 236, 251–249.PubMedGoogle Scholar
  20. 20.
    Sugiura M. 1992. The chloroplast genome. Plant Mol. Biol. 19, 149–168.CrossRefPubMedGoogle Scholar
  21. 21.
    Kanno A., Hirai A. 1993. A transcription map of the chloroplast genome from rice (Oryza sativa). Curr. Genet. 23, 166–174.CrossRefPubMedGoogle Scholar
  22. 22.
    Downing W.L., Dennis P.P. 1987. Transcription products from the rplKAJL-rpoBC gene cluster. J. Mol. Biol. 194, 609–620.CrossRefPubMedGoogle Scholar
  23. 23.
    Ishihama A. 2000. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54, 499–518.CrossRefPubMedGoogle Scholar
  24. 24.
    Ozoline O.N., Purtov Yu.A., Brok-Volchanski A.S., Deev A.A., Lukyanov V.I. 2004. Specificity of DNA-protein interactions within transcription complexes of Escherichia coli. Mol. Biol. 38, 786–797.CrossRefGoogle Scholar
  25. 25.
    Imamura S., Yoshihara S., Nakano S., Shiozaki N., Yamada A., Tanaka K., Takahashi H., Asayama M., Shirai M. 2003. Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J. Mol. Biol. 325, 857–872.CrossRefPubMedGoogle Scholar
  26. 26.
    Kestermann M., Neukirchen S., Kloppstech K., Link G. 1998. Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucleic Acids Res. 26, 2747–2753.CrossRefPubMedGoogle Scholar
  27. 27.
    Homann A., Link G. 2003. DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression. Eur. J. Biochem. 270, 1288–1300.CrossRefPubMedGoogle Scholar
  28. 28.
    Hanaoka M, Kanamaru K, Takahashi H, Tanaka K. 2003. Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res. 31, 7090–7098.CrossRefPubMedGoogle Scholar
  29. 29.
    Kanamaru K., Nagashima A., Fujiwara M., Shimada H., Shirano Y., Nakabayashi K., Shibata D., Tanaka K., Takahashi H. 2001. An Arabidopsis sigma factor (SIG2)-dependent expression of plastid encoded tRNAs in chloroplasts. Plant Cell Physiol. 42, 1034–1043.CrossRefPubMedGoogle Scholar
  30. 30.
    Nagashima A., Hanaoka M., Shikanai T., Fujiwara M., Kanamaru K., Takahashi H., Tanaka K. 2004. The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol. 45, 357–368.CrossRefPubMedGoogle Scholar
  31. 31.
    Morikawa K., Shiina T., Murakami S., Toyoshima Y. 2002. Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Lett. 514, 300–304.CrossRefPubMedGoogle Scholar
  32. 32.
    Hara K., Morita M., Takahashi R., Sugita M., Kato S., Aoki S. 2001. Characterization of two genes, Sig1 and Sig2, encoding distinct plastid sigma factors (1) in the moss Physcomitrella patens: Phylogenetic relationships to plastid sigma factors in higher plants. FEBS Lett. 499, 87–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Hara K., Sugita M., Aoki S. 2001. Cloning and characterization of the cDNA for a plastid sigma factor from the moss Physcomitrella patens. Biochem. Biophys. Acta. 1517, 302–306.PubMedGoogle Scholar
  34. 34.
    Oikawa K., Tanaka K., Takahashi H. 1998. Two types of differently photo-regulated nuclear genes that encode sigma factors for a chloroplast RNA polymerase in the red alga Cyanidium caldarium strain RK-1. Gene. 210, 277–285.CrossRefPubMedGoogle Scholar
  35. 35.
    Severinov K., Soushko M., Goldfarb A., Nikiforov V. 1993. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the β subunit of Escherichia coli RNA polymerase. J. Biol. Chem. 268, 14820–14825.PubMedGoogle Scholar
  36. 36.
    Surzycki S.J. 1969. Genetic functions of the chloroplasts of Chlamydomonas reinchardtii: Effect of rifampin on chloroplast DNA-dependent RNA polymerase. Proc. Natl. Acad. Sci. USA. 63, 1327–1334.PubMedGoogle Scholar
  37. 37.
    Pfannschmidt T., Link G. 1997. The A and B form of plastid DNA-dependent RNA polymerases from mustard (Sinapis alba L.) transcribe the same genes in a different developmental context. Mol. Gen. Genet. 257, 35–44.PubMedGoogle Scholar
  38. 38.
    Wegrzyn A., Szalewska-Palasz A., Blaszczak A., Liberek K., Wegrzyn G. 1998. Differential inhibition of transcription from σ70-and σ32-dependent promoters by rifampicin. FEBS Lett. 440, 172–174.CrossRefPubMedGoogle Scholar
  39. 39.
    Pfannschmidt T., Ogrzewalla K., Baginsky S., Sickmann A., Meyer H.E., Link G. 2000. The multisubunit RNA polymerase A from mustard (Sinapis alba L.): Integration of procaryotic core into a larger complex with organelle specific functions. Eur. J. Biochem. 267, 253–261.CrossRefPubMedGoogle Scholar
  40. 40.
    Mathews D.E., Durbin R.D. 1990. Tagetitoxin inhibits RNA synthesis directed by RNA polymerase from chloroplasts and Escherichia coli. J. Biol. Chem. 265, 493–498.PubMedGoogle Scholar
  41. 41.
    Bligny M., Courtois F., Thaminy S., Chang C.-C., Lagrange T., Baruah-Wolff J., Stern D.B., Lerbs-Mache S. 2000. Regulation of plastid rDNA transcription by interaction of CDF2 with two different RNA polymerases. EMBO J. 19, 1851–1860.CrossRefPubMedGoogle Scholar
  42. 42.
    Steinberg T.H., Mathews D.E., Durbin R.D., Burgess R.R. 1990. Tagetitoxin: A new inhibitor of eucaryotic transcription by RNA polymerase III. J. Biol. Chem. 265, 499–505.PubMedGoogle Scholar
  43. 43.
    Steinberg T.H., Burgess R.R. 1992. Tagetitoxin inhibition of RNA polymerase III transcription results from enchanced pausing at discrete sites and is template-dependent. J. Biol. Chem. 267, 20204–20211.PubMedGoogle Scholar
  44. 44.
    Knorre D.G. 1999. RNA polymerase II. Mol. Biol. 32, 129–134.Google Scholar
  45. 45.
    Paule M.R., White R.J. 2000. Survey and summary: Transcription by RNA polymerase I and III. Nucleic Acids Res. 28, 1283–1298.CrossRefPubMedGoogle Scholar
  46. 46.
    Baginsky S., Tiller K., Link G. 1997. Transcription factor phosphorylation by a protein kinase associated with chloroplast RNA polymerase from mustard (Sinapis alba). Plant Mol. Biol. 34, 181–189.CrossRefPubMedGoogle Scholar
  47. 47.
    Baginsky S., Tiller K., Pfannschmidt T., Link G. 1999. PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant Mol. Biol. 39, 1013–1023.CrossRefPubMedGoogle Scholar
  48. 48.
    Ogrzewalla K., Piotrowski M., Reinbothe S., Link G. 2002. The plastid transcription kinase from mustard (Sinapis alba L.). A nuclear encoded CK2 type chloroplast enzyme with redox-sensitive function. Eur. J. Biochem. 269, 3329–3337.CrossRefPubMedGoogle Scholar
  49. 49.
    Tiller K., Link G. 1993. Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription system from mustard (Sinapis alba). EMBO J. 12, 1745–1753.PubMedGoogle Scholar
  50. 50.
    Baumgartner B.J., Rapp J.C., Mullet J.E. 1993. Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development (Evidence for selective stabilization of psbA mRNA). Plant Physiol. 101, 781–791.PubMedGoogle Scholar
  51. 51.
    Inada H., Kusumi K., Nishimura M., Iba K. 1996. Specific expression of the chloroplast gene for RNA polymerase (rpoB) at an early stage of leaf development in rice. Plant Cell Physiol. 37, 229–232.PubMedGoogle Scholar
  52. 52.
    Emanuel C., Weihe A., Graner A., Hess W.R., Borner T. 2004. Chloroplast development affects expression of phage-type RNA polymerases in barley leaves. Plant J. 38, 460–472.CrossRefPubMedGoogle Scholar
  53. 53.
    Satoh J., Baba K., Nakahira Y., Tsunoyama Y., Shiina T., Toyoshima Y. 1999. Developmental stage-specific multi-subunit plastid RNA polymerase (PEP) in wheat. Plant J. 18, 407–415.CrossRefPubMedGoogle Scholar
  54. 54.
    Eisermann A., Tiller K., Link G. 1990. In vitro transcription and DNA binding characteristics of chloroplast end etioplast extract from mustard (Sinapis alba) indicate differential usage of psbA promoter. EMBO J. 9, 3981–3987.PubMedGoogle Scholar
  55. 55.
    Gamble P.E., Mullet J.E. 1989. Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J. 8, 2785–2794.PubMedGoogle Scholar
  56. 56.
    Nakahira Y., Baba K., Yoneda A., Shiina T., Toyoshima Y. 1998. Circadian-regulated transcription of the psbD light-responsive promoter in wheat chloroplsts. Plant Physiol. 118, 1079–1088.CrossRefPubMedGoogle Scholar
  57. 57.
    Kim M., Thum K.E., Morishige D.T., Mullet J.E. 1999. Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J. Biol. Chem. 274, 4684–4692.PubMedGoogle Scholar
  58. 58.
    Thum K.E., Kim M., Morishige D.T., Eibl C., Koop H.-U., Mullet J.E. 2001. Analysis of barley chloroplast psbD light responsive promoter elements in transplastomic tobacco. Plant. Mol. Biol. 47, 353–366.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen L.J., Orozco E.M., Jr. 1988. Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nuceic Acids Res. 16, 8411–8431.Google Scholar
  60. 60.
    Gatenby A.A., Castleton J.A., Saul M.W. 1981. Expresssion in E. coli of Z. mays and wheat chloroplast genes for large subunit of ribulose biphosphate carboxylase. Nature. 291, 117–121.CrossRefPubMedGoogle Scholar
  61. 61.
    Bradley D., Gatenby A.A. 1985. Mutational analysis of the maize chloroplast ATPase-β subunit gene promoter: The isolation of promoter mutants in E. coli and their characterisation in a chloroplast in vitro transcription system. EMBO J. 4, 3641–3648.PubMedGoogle Scholar
  62. 62.
    Boyer S.K., Mullet J. 1986. Characterisation of Pisum sativum chloropast psbA transcript produced in vivo, in vitro and in E. coli. Plant. Mol. Biol. 6, 229–243.CrossRefGoogle Scholar
  63. 63.
    Kim M., Mullet J.E. 1995. Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant Cell. 7, 1445–1457.CrossRefPubMedGoogle Scholar
  64. 64.
    Beardslee T.A., Roy-Chowdhury S., Jaiswal P., Buhot L., Lerbs-Mache S., Stern D.B., Allison L.A. 2002. A nucleus-encoded maize protein with sigma factor activity accumulates in mitochondria and chloroplasts. Plant J. 31, 199–209.CrossRefPubMedGoogle Scholar
  65. 65.
    Lerbs-Mache S. 2000. Regulation of rDNA transcription in plastids of higher plants. Biochimie. 82, 525–535.CrossRefPubMedGoogle Scholar
  66. 66.
    Suzuki J.Y., Maliga P. 2000. Engineering of the rpl23 gene cluster to replace the plastid RNA polymerase alpha subunit with the Escherichia coli homologue. Curr. Genet. 38, 218–225.CrossRefPubMedGoogle Scholar
  67. 67.
    Lerbs-Mache S. 1993. The 110-kDa polypeptide of spinach DNA-dependent RNA polymerase: Single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc. Natl. Acad. Sci. USA. 90, 5509–5513.PubMedGoogle Scholar
  68. 68.
    Hedtke B., Borner T., Weihe A. 1997. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science. 277, 809–811.CrossRefPubMedGoogle Scholar
  69. 69.
    Richter U., Kiessling J., Hedtke B., Decker E., Reski R., Borner T., Weihe A. 2002. Two RpoT genes of Physcomitrella patens encode phage type RNA polymerases with dual targeting to mitochondria and plastids. Gene. 290, 95–105.CrossRefPubMedGoogle Scholar
  70. 70.
    Hedtke B., Borner T., Weihe A. 2000. One RNA polymerase serving two genomes. EMBO Rep. 1, 435–440.CrossRefPubMedGoogle Scholar
  71. 71.
    Hedtke B., Legen J., Weihe A., Herrmann R.G., Borner T. 2002. Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J. 30, 625–637.CrossRefPubMedGoogle Scholar
  72. 72.
    Kobayashi Y., Dokiya Y., Sugita M. 2001. Dual targeting of phage-type RNA polymerase to both mitochondria and plastids is due to alternative translation initiation in single transcripts. Biochem. Biophys. Res. Commun. 289, 1106–1113CrossRefPubMedGoogle Scholar
  73. 73.
    Kobayashi Y., Dokiya Y., Kumazawa Y., Sugita M. 2002. Non-AUG translation initiation of mRNA encoding plastid-targeted phage-type RNA polymerase in Nicotiana sylvestris. Biochem. Biophys. Res. Commun. 299, 57–61.CrossRefPubMedGoogle Scholar
  74. 74.
    Chang C.-C., Sheen J., Bligny M., Niwa Y., Lerbs-Mache S., Stern D.B. 1999. Functional analysis of two maize cDNA encoding T7-like RNA polymerases. Plant Cell. 11, 911–926.CrossRefPubMedGoogle Scholar
  75. 75.
    Ikeda T.M., Gray M.W. 1999. Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat. Plant. Mol. Biol. 40, 567–578.CrossRefPubMedGoogle Scholar
  76. 76.
    Kusumi K., Yara A., Mitsui N., Tozawa Yu., Iba K. 2004. Characterisation of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol. 45, 1194–1201.CrossRefPubMedGoogle Scholar
  77. 77.
    Hajdukiewicz P.T.J., Allison L.A., Maliga P. 1997. The two RNA polymerase encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16, 4041–4048.CrossRefPubMedGoogle Scholar
  78. 78.
    Iratni R., Diedrich L., Harrak H., Bligny M., Lerbs-Mache S. 1997. Organ-specific transcription of the rrn-operon in spinach plastids. J. Biol.Chem. 272, 13676–13682.CrossRefPubMedGoogle Scholar
  79. 79.
    Hedtke B., Meixner M., Gillandt S., Richter E., Borner T., Weihe A. 1999. Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J. 17, 557–561.CrossRefPubMedGoogle Scholar
  80. 80.
    Vera A., Sugiura M. 1995. Chloroplast rRNA transcription from structurally different tandem promoters: An additional novel-type promoter. Curr. Genet. 27, 280–284.CrossRefPubMedGoogle Scholar
  81. 81.
    Vera A., Hirose T., Sugiura M. 1996. A ribosomal protein gene (rpl32) from tobacco chloroplast DNA is transcribed from alternative promoters: Similarities in promoter region organization plastid housekeeping genes. Mol. Gen. Genet. 251, 518–525.PubMedGoogle Scholar
  82. 82.
    Goldschmidt-Clermont M. 1991. Transgenic expression of aminoglicoside adenine transferase in the chloroplast: A selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19, 4083–4090.PubMedGoogle Scholar
  83. 83.
    Fisher N., Stampacchia O., Redding K., Rochaix J.D. 1996. Selectable marker recycling in the chloroplast. Mol. Gen. Genet. 251, 373–380.Google Scholar
  84. 84.
    Eberhard S., Drapier D., Wollman F.-A. 2002. Searching limiting steps in the expression of chloroplast-encoded proteins: Relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J. 31, 149–160.CrossRefPubMedGoogle Scholar
  85. 85.
    Cermakian N., Ikeda T.M., Miramontes P., Lang B.F., Gray M.W., Cedergren R. 1997. On the evolution of the single-subunit RNA polymerases. J. Mol. Evol. 45, 671–681.PubMedGoogle Scholar
  86. 86.
    Hess W.R., Borner T. 1999. Organellar RNA polymerases of higher plants. Int. Rev. Cytol. 190. 1–59.PubMedGoogle Scholar
  87. 87.
    Baba K., Schmidt J., Espinosa-Ruiz A., Villarejo A., Shiina T., Gardestrom P., Sane A.P., Bhalerao R.P. 2004. Organellar gene transcription and early seedling development are affected in the rpoT2 mutant of Arabidopsis. Plant J. 38, 38–48.CrossRefPubMedGoogle Scholar
  88. 88.
    Zhang X., Studier F.W. 1997. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J. Mol. Biol. 269, 10–27.CrossRefPubMedGoogle Scholar
  89. 89.
    Han C.D., Patrie W., Polacco M., Coe E.H. 1993. Aberrations in plastid transcripts and deficiency of plastid DNA in striped and albino mutants in maize. Planta. 191, 552–563.CrossRefGoogle Scholar
  90. 90.
    Hess W.R., Prombona A., Fieder B., Subramanian A.R., Borner T. 1993. Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome deficient plastids: Evidence for a functioning non-chloroplast encoded RNA polymerase. EMBO J. 12, 563–571.PubMedGoogle Scholar
  91. 91.
    Kabeya Y., Hashimoto K., Sato N. 2002. Identification and characterization of two phage-type RNA polymerase cDNAs in the moss Physcomitrella patens: Implication of recent evolution of nuclear encoded RNA polymerase of plastids in plants. Plant Cell Physiol. 43, 245–255.CrossRefPubMedGoogle Scholar
  92. 92.
    Kobayashi Y, Dokiya Y, Sugiura M., Niwa Y., Sugita M. 2001. Genomic-organization and organ-specific expression of a nuclear gene encoding phage-type RNA polymerase in Nicotiana sylvestris. Gene. 279, 33–40.CrossRefPubMedGoogle Scholar
  93. 93.
    Magee A.M., Kavanagh T.A. 2002. Plastid genes transcribed by the nucleus-encoded plastid RNA polymerase show increased transcript accumulation in transgenic plants expressing a chloroplast-localized phage T7 RNA polymerase. J. Exp. Bot. 53, 2341–2349.CrossRefPubMedGoogle Scholar
  94. 94.
    Shadel G.S., Clayton D.A. 1993. Mitochondrial transcription initiation. Variation and coservation. J. Biol. Chem. 268, 16083–16086.PubMedGoogle Scholar
  95. 95.
    Ikeda T.M., Gray M.W. 1999. Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria. Mol. Cell Biol. 19, 8113–8122.PubMedGoogle Scholar
  96. 96.
    Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796–815.Google Scholar
  97. 97.
    Lu G., Moriyama E.N. 2004. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinform. 5, 378–388.PubMedGoogle Scholar
  98. 98.
    Cermakian N., Ikeda T.M., Cedergren R., Gray M.W. 1997. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res. 24, 648–654.Google Scholar
  99. 99.
    Gray M.W. 1992. The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141, 233–357.PubMedCrossRefGoogle Scholar
  100. 100.
    Small I., Wintz H., Akashi K., Mireau H. 1998. Two birds with one stone: Gene that encode products targeted to two or more compartments. Plant Mol. Biol. 38, 265–277.CrossRefPubMedGoogle Scholar
  101. 101.
    Cahoon A.B., Harris F.M., Stern D.B. 2004. Analyzing of developing plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO Rep. 5, 801–806.CrossRefPubMedGoogle Scholar
  102. 102.
    Krause K., Maier R.M., Kofer W., Krupinska K., Herrmann R.G. 2000. Disruption of plastid encoded RNA polymerase genes in tobacco: Expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol. Gen. Genet. 263, 1022–1030.PubMedGoogle Scholar
  103. 103.
    Legen J., Kemp S., Krause K., Profanter B., Herrmann R.G., Maier R. 2002. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type end PEP-deficient transcription machineries. Plant J. 31, 171–188.CrossRefPubMedGoogle Scholar
  104. 104.
    Navarro J.A., Vera A., Flores R. 2000. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology. 268, 218–225.CrossRefPubMedGoogle Scholar
  105. 105.
    Nielsen B.L., Rajasekhar V.K., Tewari K.K. 1991. Pea chloroplast DNA primase: Characterization and role in initiation of replication. Plant Mol. Biol. 16, 1019–1034.CrossRefPubMedGoogle Scholar
  106. 106.
    Romano L.G., Tamanoi F., Richardson C.C. 1981. Initiation of DNA replication at the primary origin of bacteriophage T7 by purified proteins: Requirement for T7 RNA polymerase. Proc. Natl. Acad. Sci. USA. 78, 4107–4111.PubMedGoogle Scholar
  107. 107.
    Edwards J.C., Levens D., Rabinowitz M. 1982. Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription. Cell. 31, 337–346.CrossRefPubMedGoogle Scholar
  108. 108.
    Schinkel A.H., Groot-Koerkamp M.J.A., Tabak H.F. 1988. Mitochondrial RNA polymerase of Saccharomyces cerevisiae: Composition and mechanism of promoter recognition. EMBO J. 7, 3255–3262.PubMedGoogle Scholar
  109. 109.
    Li Q.-S., Gupta J.D., Hunt A.G. 1998. Polynucleotide phosphorylase is a component of a novel plant poly(A) polymerase. J. Biol. Chem. 273, 17539–17543.PubMedGoogle Scholar
  110. 110.
    Yehudai-Resheff S., Hirsh M., Schuster G. 2001. Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol. Cell. Biol. 21, 5408–5416.CrossRefPubMedGoogle Scholar
  111. 111.
    Odintsova M.S., Yurina N.P. 2003. Plastid genomes of higher plants and fungi: Structure and finctions. Mol. Biol. 37, 768–783.CrossRefGoogle Scholar
  112. 112.
    Kusumi K., Komori H., Satoh H., Iba K. 2000. Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol. 41, 158–164.PubMedGoogle Scholar
  113. 113.
    Kusumi K., Mizutani A., Nishimura M., Iba K. 1997. A virescent gene VI determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J. 12, 1241–1250.CrossRefGoogle Scholar
  114. 114.
    Surpin M., Larkin R.M., Chory J. 2002. Signal transduction between the chloroplast and the nucleus. Plant Cell. 14, 327–338.Google Scholar
  115. 115.
    Lagrange T., Hakimi M.A., Pontier D., Courtois F., Alcaraz J.P., Grunwald D., Lam E., Lerbs-Mache S. 2003. Transcription factor IIB (TFIIB)-related protein (pBrp), a plant-specific member of the TFIIB-related protein family. Mol. Cell. Biol. 23, 3274–3286.CrossRefPubMedGoogle Scholar
  116. 116.
    Zubko M.K., Day A. 2002. Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome-deficient plastids in stable phenocopies of cereal albino mutants. Mol. Genet. Genomics. 267, 27–37.CrossRefPubMedGoogle Scholar
  117. 117.
    Silhavy D., Maliga P. 1998. Mapping of promoters for the nuclear-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr. Genet. 33, 340–344.CrossRefPubMedGoogle Scholar
  118. 118.
    Silhavy D., Maliga P. 1998. Plastid promoter utilization in a rice embryogenic cell culture. Curr. Genet. 34, 67–70.CrossRefPubMedGoogle Scholar
  119. 119.
    Vogel J., Borner T., Hess W.R. 1999. Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res. 27, 3866–3874.CrossRefPubMedGoogle Scholar
  120. 120.
    Kapoor S., Suzuki J.Y., Sugiura M. 1997. Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J. 11, 327–337.CrossRefPubMedGoogle Scholar
  121. 121.
    Miyagi T., Kapoor S., Sugita M., Sugiura M. 1998. Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII) promoter upstream of atpI coding sequence. Mol. Gen. Genet. 257, 299–307.PubMedGoogle Scholar
  122. 122.
    Hubschmann T., Borner T. 1998. Characterisation of transcript initiation sites in ribosome-deficient barley plastids. Plant Mol. Biol. 36, 493–496.PubMedGoogle Scholar
  123. 123.
    Hess W.R., Hoch B., Zeltz P., Hubschmann T., Kossel H., Borner T. 1994. Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell, 6, 1455–1465.CrossRefPubMedGoogle Scholar
  124. 124.
    Dunford R., Walden R.M. 1991. Plastid genome structure and plastid-related transcript levels in albino barley plants derived from author culture. Curr. Genet. 20, 339–347.CrossRefPubMedGoogle Scholar
  125. 125.
    Rusakova E.E., Tunitskaya V.L., Kochetkov S.N. 1999. RNA polymerase of bacteriophage T7. Mol. Biol. 33, 353–367.Google Scholar
  126. 126.
    Baena-Gonzalez E., Baginsky S., Mulo P., Summer H., Aro E.-M., Link G. 2001. Chloroplast transcription at different light intensities. Glutathione-mediated phosphorylation of the major RNA polymerase involved in redox-regulated organellar gene expression. Plant Physiol. 127, 1044–1052.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • E. A. Lysenko
    • 1
  • V. V. Kuznetsov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations