Molecular Biology

, Volume 39, Issue 4, pp 529–542 | Cite as

Diverse Mechanisms of RNA Recombination

  • A. P. Gmyl
  • V. I. Agol
Review and Experimantal Articles


Recombination is widespread among RNA viruses, but many molecular mechanisms of this phenomenon are still poorly understood. It was believed until recently that the only possible mechanism of RNA recombination is replicative template switching, with synthesis of a complementary strand starting on one viral RNA molecule and being completed on another. The newly synthesized RNA is a primary recombinant molecule in this case. Recent studies have revealed other mechanisms of replicative RNA recombination. In addition, recombination between the genomes of RNA viruses can be nonreplicative, resulting from a joining of preexisting parental molecules. Recombination is a potent tool providing for both the variation and conservation of the genome in RNA viruses. Replicative and nonreplicative mechanisms may contribute differently to each of these evolutionary processes. In the form of trans splicing, nonreplicative recombination of cell RNAs plays an important role in at least some organisms. It is conceivable that RNA recombination continues to contribute to the evolution of DNA genomes.

Key words

viruses RNA genome recombination nonreplicative recombination evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Domingo E., Escarmis C., Menendez-Arias L., Holland J.J. 1999. Viral quasi-species and fitness variations. In: Origin and Evolution of Viruses. Eds. Domingo E., Webster R.G., Holland J.J. San Diego: Academic, 141–161.Google Scholar
  2. 2.
    Domingo E., Baranowski E., Escarmis C., Sobrino F., Holland J.J. 2002. Error frequencies of picornavirus RNA polymerases: evolutionary implications for virus populations. In: Molecular biology of picornaviruses. Eds. Semler B.L., Wimmer E. Washington: ASM, 285–298.Google Scholar
  3. 3.
    Sierra S., Davila M., Lowenstein P.R., Domingo E. 2000. Response of foot-and-mouth disease virus to increased mutagenesis: Influence of viral load and fitness in loss of infectivity. J. Virol. 74, 8316–8323.CrossRefPubMedGoogle Scholar
  4. 4.
    Crotty S., Cameron C.E., Andino R. 2001. RNA virus error catastrophe: Direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA. 98, 6895–6900.CrossRefPubMedGoogle Scholar
  5. 5.
    Cole C.N., Smoler D., Wimmer E., Baltimore D. 1971. Defective interfering particles of poliovirus: 1. Isolation and physical properties. J. Virol. 7, 478–485.PubMedGoogle Scholar
  6. 6.
    Monroe S.S., Schlesinger S. 1984. Common and distinct region of defective-interfering RNAs of Sindbis virus. J. Virol. 49, 865–872.PubMedGoogle Scholar
  7. 7.
    Kuge S., Saito I., Nomoto A. 1986. Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanisms of the particles. J. Mol. Biol. 192, 473–487.CrossRefPubMedGoogle Scholar
  8. 8.
    Gmyl A.P., Pilipenko E.V., Maslova S.V., Belov G.A., Agol V.I. 1993. Functional and genetic plasticities of the poliovirus genome: Quasi-infectious RNAs modified in the 5′-untranslated region yield a variety of pseudorevertants. J. Virol. 67, 6309–6316.PubMedGoogle Scholar
  9. 9.
    Pilipenko E.V., Gmyl A.P., Maslova S.V., Svitkin Y.V., Sinyakov A.N., Agol V.I. 1992. A prokaryotic-like cis-element in the cap-independent internal initiation of translation on picornavirus RNA. Cell. 68, 119–131.CrossRefPubMedGoogle Scholar
  10. 10.
    Pilipenko E.V., Gmyl A.P., Maslova S.V., Khitrina E.V., Agol V.I. 1995. Attenuation of Theiler’s murine encephalomyelitis virus by modifications of the oligopyrimidine/AUG tandem, a host-dependent translational cis-element. J. Virol. 69, 864–870.PubMedGoogle Scholar
  11. 11.
    Pilipenko E.V., Viktorova E.G., Khitrina E.V., Maslova S.V., Jarousse N., Brahic M., Agol V.I. 1999. Distinct attenuation phenotypes caused by mutations in the translational starting window of Theiler’s murine encephalomyelitis virus. J. Virol. 73, 3190–3196.PubMedGoogle Scholar
  12. 12.
    Forss S., Strebel K., Beck E., Schaller H. 1984. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 12, 6587–6601.PubMedGoogle Scholar
  13. 13.
    Pilipenko E.V., Blinov V.M., Agol V.I. 1990. Gross rearrangements within the 5′-untranslated region of the picornaviral genomes. Nucleic Acids Res. 18, 3371–3375.PubMedGoogle Scholar
  14. 14.
    Hirst G.K. 1962. Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harbor Symp. Quant. Biol. 27, 303–309.PubMedGoogle Scholar
  15. 15.
    Ledinko N. 1963. Genetic recombination with poliovirus type 1. Studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology. 20, 107–119.CrossRefPubMedGoogle Scholar
  16. 16.
    Pringle C.R. 1965. Evidence of genetic recombination in foot-and-mouth disease virus. Virology. 25, 48–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Cooper P.D. 1968. A genetic map of poliovirus temperature-sensitive mutants. Virology. 35, 584–596.CrossRefPubMedGoogle Scholar
  18. 18.
    Romanova L.I., Tolskaya E.A., Kolesnikova M.S., Agol V.I. 1980. Biochemical evidence for intertypic genetic recombination of polioviruses. FEBS Lett. 118, 109–112.CrossRefPubMedGoogle Scholar
  19. 19.
    Tolskaya E.A., Romanova L.I., Kolesnikova M.S., Agol V.I. 1983. Intertypic recombination in poliovirus: Genetic and biochemical studies. Virology. 124, 121–132.CrossRefPubMedGoogle Scholar
  20. 20.
    King A.M.Q., McCahon D., Slade W.R., Newman J.W.I. 1982. Recombination in RNA. Cell. 29, 921–928.CrossRefPubMedGoogle Scholar
  21. 21.
    King A.M.Q., McCahon D., Saunders K., Newman J.W.I., Slade W.R. 1985.Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus Res. 3, 373–384.CrossRefPubMedGoogle Scholar
  22. 22.
    Romanova L.I., Viktorova, Tolskaya E.A., Kolesnikova M.S., Agol V.I. 1983. Analysis of oligonucleotide maps as a method for identifying intertypic recombination in poliovirus. Mol. Genet. Mikrobiol. Virusol. 7, 41–43.Google Scholar
  23. 23.
    Romanova L.I., Viktorova, Tolskaya E.A., Kolesnikova M.S., Guseva E.A., Agol V.I. 1985. The primary structure of crossover region in the genome of two intertypic polyovirus recombinants. Bioorg. Khim. 11, 1685–1687.PubMedGoogle Scholar
  24. 24.
    Romanova L.I., Blinov V.M., Tolskaya E.A., Viktorova E.G., Kolesnikova M.S., Guseva E.A., Agol V.I. 1986. The primary structure of crossover regions of intertypic poliovirus recombinants: A model of recombination between RNA genomes. Virology. 155, 202–213.CrossRefPubMedGoogle Scholar
  25. 25.
    Kirkegaard K., Baltimore D. 1986. The mechanism of RNA recombination in poliovirus. Cell. 47, 433–443.CrossRefPubMedGoogle Scholar
  26. 26.
    Cooper P.D. 1977. Genetics of picornaviruses. In: Comprehensive Virology. Eds. Fraenkel-Conrat H., Wagner R.R. N.Y.: Plenum, 9, 133–208.Google Scholar
  27. 27.
    Agol V.I., Tolskaya E.A. 1988. Recombination between RNA genomes. Mol. Biol. 22, 293–302.Google Scholar
  28. 28.
    Lai M.M.C. 1992. RNA recombination in animal and plant viruses. Microbiol. Rev. 56, 61–79.PubMedGoogle Scholar
  29. 29.
    Agol V.I. 1997. Recombination and other genomic rearrangements in picornaviruses. Semin. Virol. 8, 1–9.CrossRefGoogle Scholar
  30. 30.
    Worobey M., Holmes E.C. 1999. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80, 2535–2543.PubMedGoogle Scholar
  31. 31.
    Chare E.R., Gould E.A., Holmes E.C. 2003. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA virus. J. Gen. Virol. 88, 2691–2703.CrossRefGoogle Scholar
  32. 32.
    Nagy P.D., Simon A.E. 1997. New insights into the mechanisms of RNA recombination. Virology. 235, 1–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Alejska M., Kurzyniska-Kokorniak A., Broda M., Kierzek R., Figlerowicz M. 2001. How RNA viruses exchange their genetic material. Acta Biochim. Pol. 48, 391–407.PubMedGoogle Scholar
  34. 34.
    Mindich L., Qiao X., Onodera S., Gottlieb P., Strassman J. 1992. Heterologous recombination in the double-stranded RNA bacteriophage phi 6. J. Virol. 66, 2605–2610.PubMedGoogle Scholar
  35. 35.
    Chetverin A.B. 1997. Recombination in bacteriophage Qβ its satellite RNAs: The in vivo and in vitro studies. Semin. Virol. 8, 121–129.CrossRefGoogle Scholar
  36. 36.
    Twiddy S.S., Holmes E.C. 2003. The extent of homologous recombination in members of the genus Flavivirus. J. Gen. Virol. 84, 429–440.CrossRefPubMedGoogle Scholar
  37. 37.
    Dahourou G., Guillot S., Le Gall O., Crainic R. 2002. Genetic recombination in wild-type poliovirus. J. Gen. Virol. 83, 3103–3110.PubMedGoogle Scholar
  38. 38.
    Lindberg A.M., Andersson P., Savolainen C., Mulders M.N., Hovi T. 2003. Evolution of the genome of Human enterovirus B: Incongruence between phylogenies of the VP1 and 3CD regions indicates frequent recombination within the species. J. Gen. Virol. 84, 1223–1235.CrossRefPubMedGoogle Scholar
  39. 39.
    Lukashev A.N., Lashkevich V.A., Ivanova O.E., Koroleva G.A., Hinkkanen A.E., Ilonen J. 2003. Recombination in circulating enteroviruses. J. Virol. 77, 10423–10431.CrossRefPubMedGoogle Scholar
  40. 40.
    Lukashev A.N., Lashkevich V.A., Koroleva G.A., Ilonen J., Hinkkanen A.E. 2004. Recombination in uveitis-causing enterovirus strains. J. Gen. Virol. 85, 463–470.CrossRefPubMedGoogle Scholar
  41. 41.
    Oberste M.S., Penaranda S., Pallansch M.A. 2004. RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. J. Virol. 78, 2948–2955.CrossRefPubMedGoogle Scholar
  42. 42.
    Oberste M.S., Maher K., Pallansch M.A. 2004. Evidence for frequent recombination within species human enterovirus B based incomplete genomic sequences of all thirty-seven serotypes. J. Virol. 78, 855–867.CrossRefPubMedGoogle Scholar
  43. 43.
    Oberste M.S., Penaranda S., Maher K., Pallansch M.A. 2004. Complete genome sequences of all members of the species Human enterovirus A. J. Gen. Virol. 85, 1597–1607.CrossRefPubMedGoogle Scholar
  44. 44.
    Tang R.S., Barton D.J., Flanegan J.B., Kirkegaard K. 1997. Poliovirus RNA recombination in cell-free extracts. RNA. 3, 624–633.PubMedGoogle Scholar
  45. 45.
    Duggal R., Cuconati A., Gromeier M., Wimmer E. 1997. Genetic recombination of poliovirus in a cell-free systems. Proc. Natl. Acad. Sci. USA. 94, 13786–13791.CrossRefPubMedGoogle Scholar
  46. 46.
    Nagy P.D., Zhang C., Simon A.E. 1998. Dissecting RNA recombination in vitro: Role of RNA sequences and the viral replicase. EMBO J. 17, 2392–2403.CrossRefPubMedGoogle Scholar
  47. 47.
    Cheng C.P., Nagy P.D. 2003. Mechanism of RNA recombination in carmo-and tombusviruses: Evidence for template switching by the RNA-dependent RNA polymerase in vitro. J. Virol. 77, 12033–12047.CrossRefPubMedGoogle Scholar
  48. 48.
    Kim M.J., Kao C. 2001. Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: Implications for RNA-RNA recombination. Proc. Natl. Acad. Sci. USA. 98, 4972–4977.CrossRefPubMedGoogle Scholar
  49. 49.
    Cooper P.D., Steiner-Pryor A., Scotti P.D., Delong D. 1974. On the nature of poliovirus genetic recombinants. J. Gen. Virol. 23, 41–49.PubMedGoogle Scholar
  50. 50.
    Chetverin A.B. 1999. The puzzle of RNA recombination. FEBS Lett. 460, 1–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Chetverin A.B. 1999. A new look on RNA recombination. Mol. Biol. 33, 985–996.Google Scholar
  52. 52.
    Nagy P.D., Dzianott A., Ahlquist P., Bujarski J.J. 1995. Mutations in the helicase-like domain of protein 1a alter the sites of RNA-RNA recombination in brome mosaic virus. J. Virol. 69, 2547–2556.PubMedGoogle Scholar
  53. 53.
    Figlerowicz M., Nagy P.D., Bujarski J.J. 1997. A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in RNA virus. Proc. Natl. Acad. Sci. USA. 94, 2073–2078.CrossRefPubMedGoogle Scholar
  54. 54.
    Figlerowicz M., Nagy P.D., Tang N., Kao C.C., Bujarski J.J. 1998. Mutations in the N terminus of the brome mosaic virus polymerase affect genetic RNA-RNA recombination. J. Virol. 72, 9192–9200.PubMedGoogle Scholar
  55. 55.
    Arnold J.J., Cameron C.E. 1999. Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro. J. Biol. Chem. 274, 2706–2716.CrossRefPubMedGoogle Scholar
  56. 56.
    Flanegan J.B., Baltimore D. 1977. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A). Proc. Natl. Acad. Sci. USA. 74, 3677–3680.PubMedGoogle Scholar
  57. 57.
    Dmitrieva T.M., Norkina K.B., Agol V.I. 1991. Encephalomyocarditis virus RNA polymerase preparations, with and without RNA helicase activity. J. Virol. 65, 2714–2717.PubMedGoogle Scholar
  58. 58.
    Cho M.W., Richards O.S., Dmitrieva T.M., Agol V.I., Ehrenfeld E. 1993. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J. Virol. 67, 3010–3018.PubMedGoogle Scholar
  59. 59.
    Zhong W., Ferrari E., Lesburg C.A., Maag D., Ghosh S.K.B., Cameron C.E., Lau J. Y.N. 2000. Template/primer requirements and single nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase. J. Virol. 74, 9134–9143.CrossRefPubMedGoogle Scholar
  60. 60.
    Chetverin A.B., Kopein D.S., Chetverina H.V., Demidenko A.A., Ugarov V.I. 2005. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J. Biol. Chem. 280, in press (published online December 17, 2004 as doi:10.1074 / jbc.M412684200).Google Scholar
  61. 61.
    Tolskaya E.A., Romanova L.I., Blinov V.M., Viktorova E.G., Sinyakov A.N., Kolesnikova M.S., Agol V.I. 1987. Studies on the recombination between RNA genomes of poliovirus: The primary structure and non-random distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology. 161, 54–62.CrossRefPubMedGoogle Scholar
  62. 62.
    Nagy P.D., Bujarski J.J. 1993. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc. Natl. Acad. Sci. USA. 90, 6390–6394.PubMedGoogle Scholar
  63. 63.
    Figlerowicz M. 2000. Role RNA structure in nonhomologous recombination between genomic molecules of brome mosaic virus. Nucleic Acids Res. 28, 1714–1723.CrossRefPubMedGoogle Scholar
  64. 64.
    King A.M. 1988. Preferred sites of recombination in poliovirus RNA: an analysis of 40 intertypic crossover sequences. Nucleic Acids Res. 16, 1705–1723.Google Scholar
  65. 65.
    Nagy P.D., Bujarski J.J. 1996. Homologous RNA recombination in brome mosaic virus: AU-rich sequence decreases the accuracy of crossovers. J. Virol. 70, 415–426.PubMedGoogle Scholar
  66. 66.
    Pilipenko E.V., Gmyl A.P., Agol V.I. 1995. A model for rearrangements in RNA genomes. Nucleic Acids Res. 23, 1870–1875.PubMedGoogle Scholar
  67. 67.
    Jarvis T.C., Kirkegaard K. 1991. The polymerase in its labyrinth: Mechanisms and implications of RNA recombination. Trends Genet. 7, 186–191.PubMedGoogle Scholar
  68. 68.
    Kassavetis G.A., Geiduschek E.P. 1993. RNA polymerase marching backward. Science. 259, 944–945.Google Scholar
  69. 69.
    Komissarova N., Kashlev M. 1997. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl. Acad. Sci. USA. 94, 1755–1760.CrossRefPubMedGoogle Scholar
  70. 70.
    Cascone P.J., Haydar T.F., Simon A.E. 1993. Sequences and structures required for recombination between virus-associated RNAs. Science. 260, 801–805.Google Scholar
  71. 71.
    Wierzchoslawski R., Dzianott A., Kunimalayan S., Bujarski J.J. 2003. A transcriptionally active subgenomic promoter supports homologous crossovers in a plus-strand RNA virus. J. Virol. 77, 6769–6776.CrossRefPubMedGoogle Scholar
  72. 72.
    Wierzchoslawski R., Dzianott A., Bujarski J. 2004. Dissecting the requirement for subgenomic promoter sequences by RNA recombination of brome mosaic virus in vivo: evidence for functional separation of transcription and recombination. J. Virol. 78, 8552–8564.CrossRefPubMedGoogle Scholar
  73. 73.
    Suzuki M., Hibi T., Masuta C. 2003. RNA recombination between cucumoviruses: Possible role of predicted stem-loop structures and an internal subgenomic promoter-like motif. Virology. 306, 77–86.CrossRefPubMedGoogle Scholar
  74. 74.
    Hajjou M., Hill K.R., Subramaniam S.V., Hu J.Y., Raju R. 1996. Nonhomologous RNA-RNA recombination events at the 3′ nontranslated region of Sindbis virus genome: hot spots and utilization of nonviral sequences. J. Virol. 70, 5153–5164.PubMedGoogle Scholar
  75. 75.
    Zhang X., Lai M.M. C. 1994. Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: Implications for the mechanism of RNA transcription and recombination. J. Virol. 68, 6626–6633.PubMedGoogle Scholar
  76. 76.
    Lai M.M.C., Holmes K.V. 2001. Coronaviridae: The viruses and their replication. In: Fields Virology. 4th ed., Eds. Knipe D.M., Howley P.M. Philadelphia: Lippincott, Williams and Wilkins, 1163–1185.Google Scholar
  77. 77.
    Duggal R., Wimmer E. 1999. Genetic recombination of poliovirus in vitro and in vivo: temperature-dependent alteration of crossover sites. Virology. 258, 30–41.CrossRefPubMedGoogle Scholar
  78. 78.
    Chetverin A.B., Chetverina H.V., Demidenko A.A., Ugarov V.I. 1997. Nonhomologous RNA recombination in a cell-free system: Evidence for a transesterification mechanism guided by secondary structure. Cell. 88, 503–513.CrossRefPubMedGoogle Scholar
  79. 79.
    Chetverin A.B., Chetverina H.V., Munishkin A.V. 1991. On the nature of spontaneous RNA synthesis by Qβ replicase. J. Mol. Biol. 222, 3–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Chetverina H.V., Chetverin A.B. 1993. Cloning of RNA molecules in vitro. Nucleic Acids Res. 21, 2349–2353.PubMedGoogle Scholar
  81. 81.
    Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. 1999. Spontaneous rearrangements in RNA sequences. FEBS Lett. 450, 89–94.CrossRefPubMedGoogle Scholar
  82. 82.
    Agol V. I. 2002. Picornavirus genome: An overview. In: Molecular Biology of Picornaviruses. Eds. Semler B.L., Wimmer E. Washington: ASM, 127–148.Google Scholar
  83. 83.
    Ehrenfeld E., Teterina N. 2002. Initiation of translation of picornavirus RNAs: Structure and function of the internal ribosome entry site. In: Molecular Biology of Picornaviruses. Eds. Semler B. L., Wimmer E. Washington: ASM,159–169.Google Scholar
  84. 84.
    Agol V.I. 2001. Translational control of picornavirus phenotype. Mol. Biol. 35, 691–701.CrossRefGoogle Scholar
  85. 85.
    Paul A. 2002. Possible unifying mechanism of picornavirus genome replication. In: Molecular Biology of Picornaviruses. Eds. Semler B.L., Wimmer E. Washington: ASM, 227–246.Google Scholar
  86. 86.
    Gmyl A.P., Belousov E.V., Maslova S.V., Khitrina E.V., Chetverin A. B., Agol V.I. 1999. Nonreplicative RNA recombination in poliovirus. J. Virol. 73, 8958–8965.PubMedGoogle Scholar
  87. 87.
    Kuge S., Nomoto A. 1987. Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: Function of the 5′ noncoding sequence in viral replication. J. Virol. 61, 1478–1487.PubMedGoogle Scholar
  88. 88.
    Iizuka N., Kohara M., Hagino-Yamagishi K., Abe S., Komatsu T., Tago K., Arita M., Nomoto A. 1989. Construction of less neurovirulent polioviruses by introducing deletions into the 5′ noncoding sequence of the genome. J. Virol. 63, 5354–5365.PubMedGoogle Scholar
  89. 89.
    Slobodskaya O.R., Gmyl A.P., Maslova S.V., Tolskaya E.A., Viktorova E.G., Agol V.I. 1996. Poliovirus neurovirulence depends on the presence of a cryptic AUG upstream of the initiator codon. Virology. 221, 141–150.CrossRefPubMedGoogle Scholar
  90. 90.
    Gmyl A.P., Korshenko S.A., Belousov E.V., Khitrina E.V., Agol V.I. 2003. Nonreplicative homologous RNA recombination: promiscuous joining of RNA pieces? RNA. 9, 1221–1223.CrossRefPubMedGoogle Scholar
  91. 91.
    Abelson J., Trotta C. R., Li H. 1998. tRNA splicing. J. Biol. Chem. 273, 12685–12688.CrossRefPubMedGoogle Scholar
  92. 92.
    Reid C.E., Lazinski D.W. 2000. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc. Natl. Acad. Sci. USA. 97, 424–429.CrossRefPubMedGoogle Scholar
  93. 93.
    Ho C.K., Shuman S. 2002. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc. Natl. Acad. Sci. USA. 99, 12709–12714.CrossRefPubMedGoogle Scholar
  94. 94.
    Salgia S.R., Singh S.K., Gurha P., Gupta R. 2003. Two reactions of Haloferax volcanii RNA splicing enzymes: Joining of exons and circularization of introns. RNA. 9, 319–330.CrossRefPubMedGoogle Scholar
  95. 95.
    Cruz-Reyes J., Zhelonkina A.G., Huang C.E., Sollner-Webb B. 2002. Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol. Cell. Biol. 22, 4652–4660.CrossRefPubMedGoogle Scholar
  96. 96.
    Simpson L., Sbicego S., Aphasizhev R. 2003. Uridine insertion/deletion RNA editing in trypanosome mitochondria: A complex business. RNA. 9, 265–276.CrossRefPubMedGoogle Scholar
  97. 97.
    Filipowicz W., Shatkin A.J. 1983. Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell. 32, 547–557.CrossRefPubMedGoogle Scholar
  98. 98.
    Filipowicz W., Konarska M., Gross H.J., Shatkin A.J. 1983. RNA 3′-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res. 11, 1405–1418.PubMedGoogle Scholar
  99. 99.
    Lindenbach B.D., Rice C.M. 2001. Flaviviridae: the viruses and their replication. In: Fields Virology, 4th ed. Eds. Knipe D.M., Howley P.M. Philadelphia: Lippincott, Williams and Wilkins, 991–1041.Google Scholar
  100. 100.
    Meyers G., Thiel H.-J. 1996. Molecular characterization of pestiviruses. Adv. Virus Res. 47, 53–118.PubMedGoogle Scholar
  101. 101.
    Gallei A., Pankraz A., Thiel H.-J., Becher P. 2004. RNA recombination in vivo in the absence of viral replication. J. Virol. 78, 6271–6281.CrossRefPubMedGoogle Scholar
  102. 102.
    Reed R. 2000. Mechanisms of fidelity in pre-mRNA splicing. Current Opin. Cell Biol. 12, 340–345.CrossRefGoogle Scholar
  103. 103.
    Doudna J.A., Cech T.R. 2002. The chemical repertoire of natural ribozymes. Nature. 418, 222–228.Google Scholar
  104. 104.
    Singh R. 2002. RNA-protein interactions that regulate pre-mRNA splicing. Gene Expr. 10, 79–92.PubMedGoogle Scholar
  105. 105.
    Maniatis T., Tasic B. 2002. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature. 418, 236–243.Google Scholar
  106. 106.
    Liang X.-H., Haritan A., Uliel S., Michaeli S. 2003. Trans and cis splicing in Trypanosomatids: Mechanism, factors, and regulation. Eukaryotic Cell. 2, 830–840.CrossRefPubMedGoogle Scholar
  107. 107.
    Sullenger B.A., Cech T.R. 1994. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature. 371, 619–622.Google Scholar
  108. 108.
    Jin Tang J., Breaker R.R. 2000. Structural diversity of self-cleaving ribozymes. Proc. Natl. Acad. Sci. USA. 97, 5784–5789.CrossRefPubMedGoogle Scholar
  109. 109.
    Hegg L.A., Fedor M.J. 1995. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry. 34, 15813–15828.CrossRefPubMedGoogle Scholar
  110. 110.
    Hertel K.J., Uhlenbeck O.C. 1995. The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry. 34, 1744–1749.CrossRefPubMedGoogle Scholar
  111. 111.
    Bartel D.P., Szostak J.W. 1993. Isolation of new ribozymes from a large pool of random sequences. Science. 261, 1411–1418.PubMedGoogle Scholar
  112. 112.
    Landweber L.F., Pokrovskaya I.D. 1999. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: The spandrels of RNA evolution. Proc. Natl. Acad. Sci. USA. 96, 173–178.CrossRefPubMedGoogle Scholar
  113. 113.
    Robertson M.P., Ellington A.D. 2000. Design and optimization of effector activated ribozyme ligases. Nucleic Acids Res. 28, 1751–1759.CrossRefPubMedGoogle Scholar
  114. 114.
    Lan N., Howrey R.P., Lee S.-W., Smith C.A., Sullenger B.A. 1998. Ribozyme-mediated repair of sickle β-globin mRNAs in erythrocyte precursors. Science. 280, 1593–1596.Google Scholar
  115. 115.
    Ayre B.G., Kohler U., Goodman H.M., Haseloff J. 1999. Design of highly specific cytotoxins by using trans-splicing ribozymes. Proc. Natl. Acad. Sci. USA. 96, 3507–3512.CrossRefPubMedGoogle Scholar
  116. 116.
    Watanabe T., Sullenger B.A. 2000. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA. 97, 8490–8494.CrossRefPubMedGoogle Scholar
  117. 117.
    Mikheeva S., Jarrell K.A. 1996. Use of engineered ribozymes to catalyze chimeric gene assembly. Proc. Natl. Acad. Sci. USA. 93, 7486–7490.CrossRefPubMedGoogle Scholar
  118. 118.
    Morl M., Schmelzer C. 1990. Group II intron RNA-catalyzed recombination of RNA in vitro. Nucleic Acids Res. 18, 6545–6551.PubMedGoogle Scholar
  119. 119.
    Riley C.A., Lehman N. 2003. Generalized RNA-directed recombination of RNA. Chem. Biol. 10, 1233–1243.CrossRefPubMedGoogle Scholar
  120. 120.
    Woodson S.A., Cech T.R. 1989. Reverse self-splicing of the Tetrahymena group I intron: Implication for the directionality of splicing and for intron transposition. Cell. 57, 335–345.CrossRefPubMedGoogle Scholar
  121. 121.
    Morl M., Schmelzer C. 1990. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell. 60, 629–636.CrossRefPubMedGoogle Scholar
  122. 122.
    Roman J., Woodson S.A. 1998. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proc. Natl. Acad. Sci. USA. 95, 2134–2139.CrossRefPubMedGoogle Scholar
  123. 123.
    Landthaler M., Shub D.A. 1999. Unexpected abundance of self-splicing group I introns in the genome of bacteriophage Twort: Introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl. Acad. Sci. USA. 96, 7005–7010.CrossRefPubMedGoogle Scholar
  124. 124.
    Edgell D.R., Belfort M., Shub D.A. 2000. Barriers to Intron promiscuity in bacteria. J. Bacteriol. 182, 5281–5289.CrossRefPubMedGoogle Scholar
  125. 125.
    Garcia-Blanco M.A. 2003. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J. Clin. Invest. 112, 474–480.CrossRefPubMedGoogle Scholar
  126. 126.
    Long M.B., Jones III J.P., Sullenger B.A., Byun J. 2003. Ribozyme-mediated revision of RNA and DNA. J. Clin. Invest. 112, 312–318.CrossRefPubMedGoogle Scholar
  127. 127.
    Ryu K.-J., Kim J.-H., Lee S.-W. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386–395.CrossRefPubMedGoogle Scholar
  128. 128.
    Carpenter C.D., Simon A.E. 1996. In vivo restoration of biologically active 3′ ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif. J. Virol. 70, 478–486.PubMedGoogle Scholar
  129. 129.
    Chao L. 1997. Evolution of sex and the molecular clock in RNA viruses. Gene. 205, 301–308.CrossRefPubMedGoogle Scholar
  130. 130.
    Agol V.I. 2002. Picornavirus genetics: An overview. In: Molecular Biology of Picornaviruses. Eds. Semler B.L., Wimmer E. Washington: ASM, 269–284.Google Scholar
  131. 131.
    Bujarski J.J., Kaesberg P. 1986. Genetic recombination between RNA components of a multipartite plant virus. Nature. 321, 528–531.Google Scholar
  132. 132.
    Simon A.E., Nagy P.D. 1996. RNA recombination in turnip crinkle virus: Its role in formation of chimeric RNAs, multimers, and in 3′-end repair. Semin. Virol. 7, 373–379.CrossRefGoogle Scholar
  133. 133.
    Guan H., Simon A.E. 2000. Polymerization of nontemplate bases before transcription initiation at the 3′ ends of templates by RNA-dependent RNA polymerase: An activity involved in 3′ end repair of viral RNAs. Proc. Natl. Acad. Sci. USA. 97, 12451–12456.CrossRefPubMedGoogle Scholar
  134. 134.
    Nagy P.D., Bujarski J.J. 1995. Efficient system of homologous RNA recombination in brome mosaic virus: Sequence and structure requirements and accuracy of crossovers. J. Virol. 69, 131–140PubMedGoogle Scholar
  135. 135.
    Dolja V.V., Carrington J.C. 1992. Evolution of positive-strand RNA viruses. Semin. Virol. 3, 315–326.Google Scholar
  136. 136.
    Dolja V.V., Karasev A.V., Koonin E.V. 1994. Molecular biology and evolution of closteroviruses: Sophisticated buildup of large RNA genomes. Ann. Rev. Phytopathol. 32, 261–285.CrossRefGoogle Scholar
  137. 137.
    Cammack N., Phillips A., Dunn G., Patel V., Minor P.D. 1988. Intertypic genomic rearrangements of poliovirus strains in vaccines. Virology. 167, 507–514.PubMedGoogle Scholar
  138. 138.
    Cuervo N.S., Guillot S., Romanenkova N., Cochi S.L., Combiescu M., Aubert-Combiescu A., Seghier M., Caro V., Crainic R., Delpeyroux F. 2001. Genomic features of intertypic recombinant Sabin poliovirus strains excreted by primary vaccinees. J. Virol. 75, 5740–5751.CrossRefPubMedGoogle Scholar
  139. 139.
    Lipskaya G.Yu., Muzychenko A.R., Kutitova O.K., Maslova S.V., Equestre M., Drozdov S.G., Perez Bercoff R., Agol V.I. 1991. Frequent isolation of intertypic poliovirus recombinants with serotype 2 specificity from vaccine-associated polio cases. J. Med. Virol. 35, 290–296.PubMedGoogle Scholar
  140. 140.
    Furione M., Guillot S., Otelea D., Balanant J., Candrea A., Crainic R. 1993. Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology. 196, 199–208.CrossRefPubMedGoogle Scholar
  141. 141.
    Georgescu M. M., Balanant J., Macadam A., Otelea D., Combiescu M., Combiescu A.A., Crainic R., Delpeyroux F. 1997. Evolution of the Sabin type 1 poliovirus in humans: Characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J. Virol. 71, 7758–7768.PubMedGoogle Scholar
  142. 142.
    Kew O.M., Wright P.F., Agol V.I., Delpeyroux F., Shimizu H. Nathanson N., Pallansch M. 2004. Circulating vaccine-derived polioviruses: current state of knowledge. Bull. WHO. 82, 16–23.PubMedGoogle Scholar
  143. 143.
    Raju R., Subramanaim S.V., Hajjou M. 1995. Genesis of Sindbis virus by in vitro recombination of nonreplicative RNA precursors. J. Virol. 69, 7391–7401.PubMedGoogle Scholar
  144. 144.
    Adams S.D., Tzeng W.-P., Chen M.-H., Frey T.K. 2003. Analysis of intermolecular RNA-RNA recombination by rubella virus. Virology. 309, 258–271.CrossRefPubMedGoogle Scholar
  145. 145.
    Liang Y., Gillam S. 2001. Rubella virus RNA replication is cis-preferential and synthesis of negative-and positive-strand RNAs is regulated by the processing of nonstructural protein. Virology. 282, 307–319.CrossRefPubMedGoogle Scholar
  146. 146.
    Tzeng W.P., Chen M.H., Derdeyn C.A., Frey T.K. 2001. Rubella virus DI RNAs and replicons: Requirement for nonstructural proteins acting in cis for amplification by helper virus. Virology. 289, 63–73.CrossRefPubMedGoogle Scholar
  147. 147.
    Gorbalenya A. E. 1995. Origin of RNA viral genomes: approaching the problem by comparative sequence analysis. In: Molecular Basis of Virus Evolution. Eds. Gibbs A.J., Calisher C.H., Garcia-Arenal F. Cambridge: Cambridge Univ. Press, 49–66.Google Scholar
  148. 148.
    Meyers G., Tautz N., Dubovi E.J., Thiel H.-J. 1991. Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences. Virology. 180, 602–616.CrossRefPubMedGoogle Scholar
  149. 149.
    Becher P., Orlich M., Konig M., Thiel H.-J. 1999. Nonhomologous RNA recombination in bovine viral diarrhea virus: Molecular characterization of a variety of subgenomic RNAs isolated during an outbreak of fatal mucosal disease. J. Virol. 73, 5646–5653.PubMedGoogle Scholar
  150. 150.
    Qi F., Ridpath J.F., Berry E.S. 1998. Insertion of a bovine SMT3B gene in NS4B and duplication of NS3 in a bovine viral diarrhea virus genome correlate with the cytopathogenicity of the virus. Virus Res. 57, 1–9.CrossRefPubMedGoogle Scholar
  151. 151.
    Baroth M., Orlich M., Thiel H.-J., Becher P. 2000. Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology. 278, 456–466.CrossRefPubMedGoogle Scholar
  152. 152.
    Meyers G., Stoll D., Gunn M. 1998. Insertion of a sequence encoding light chain 3 of microtubule-associated proteins 1A and 1B in a pestivirus genome: Connection with virus cytopathogenicity and induction of lethal disease in cattle. J. Virol. 72, 4139–4148.PubMedGoogle Scholar
  153. 153.
    Becher P., Thiel H.-J., Collins M., Brownlie J., Orlich M. 2002. Cellular sequences in pestivirus genomes encoding gamma-aminobutyric acid receptor-associated protein and Golgi-associated ATPase enhancer of 16 kilo-daltons. J. Virol. 76, 13069–13076.CrossRefPubMedGoogle Scholar
  154. 154.
    Becher P., Orlich M., Thiel H.-J. 1998. Ribosomal S27a coding sequences upstream of ubiquitin coding sequences in the genome of a pestivirus. J. Virol. 72, 8697–8704.PubMedGoogle Scholar
  155. 155.
    Khatchkian D., Orlich M., Rott R. 1989. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 340, 156–157.Google Scholar
  156. 156.
    Mayo M.A., Jolly C.A. 1991. The 5′-terminal sequence of potato leafroll virus RNA: Evidence of recombination between virus and host RNA. J. Gen. Virol. 72, 2591–2595.PubMedGoogle Scholar
  157. 157.
    Monroe S.S., Schlesinger S. 1983. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends. Proc. Natl. Acad. Sci. USA. 80, 3279–3283.PubMedGoogle Scholar
  158. 158.
    Munishkin A.V., Voronin L.A., Chetverin A.B. 1988. An in vivo recombinant RNA capable of autocatalytic synthesis by Q beta replicase. Nature. 333, 473–475.Google Scholar
  159. 159.
    Charini W.A., Todd S., Gutman G.A., Semler B.L. 1994. Transduction of a human RNA sequence by poliovirus. J. Virol. 68, 6547–6552.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. P. Gmyl
    • 1
  • V. I. Agol
    • 1
    • 2
  1. 1.Chumakov Institute of Poliomyelitis and Viral EncephalitesRussian Academy of Medical SciencesMoscow RegionRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations