Molecular Biology

, Volume 39, Issue 4, pp 466–472 | Cite as

The RNA World and Its Evolution

  • A. S. Spirin
Review and Experimantal Articles


This paper develops Belozersky’s early idea of the precedence of RNA in the origin of life on the Earth. Based on the current knowledge of the functional omnipotence of RNA, three new mechanisms are considered that could be critical for the origin and evolution of the ancient RNA world: (1) the reaction of spontaneous transesterification of polyribonucleotides in aqueous media, which has been recently discovered by A.B. Chetverin and colleagues and could result in elongation of short initial oligoribonucleotides and generate sequence variants for further selection; (2) compartmentation of functional RNA ensembles in the form of mixed molecular colonies on moist mineral surfaces, in the absence of membranes and other envelopes; and (3) systematic exponential enrichment of an RNA population with “ functionally the best” molecules due to alternating dissolution of the colonies upon flooding and formation of new colonies upon drying in ancient pools (“primordial natural SELEX”).

Key words

spontaneous transesterification of polyribonucleotides RNA molecular colonies ribozymes SELEX RNA evolution RNA world 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belozersky A.N. 1957. On species specificity of nucleic acids in bacteria. In: Vozniknovenie zhizni na Zemle (The Origin of Line on Earth). Eds. Oparin A.I. et al. Moscow: Akad. Nauk SSSR, pp. 198–205.Google Scholar
  2. 2.
    Belozersky A.N. 1959. On the species specificity of the nucleic acids of bacteria. In: The Origin of Life on the Earth. Eds. Oparin A.I., Pasynskii A.G., Braunshtein A.E., Pavlovskaya T.E., Clark F., Synge R.L.M. London: Pergamon, pp. 322–331.Google Scholar
  3. 3.
    Gierer A., Schramm G. 1956. Infectivity of ribonucleic acid from tobacco mosaic virus. Nature. 177, 702–703.PubMedGoogle Scholar
  4. 4.
    Fraenkel-Conrat H., Singer B., Williams R.C. 1957. Infectivity of viral nucleic acid. Biochim. Biophys. Acta. 25, 87–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. 1982. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 31, 147–157.CrossRefPubMedGoogle Scholar
  6. 6.
    Guerrier-Takada C., Gardiner K., March T., Pace N., Altman S. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 35, 849–857.CrossRefPubMedGoogle Scholar
  7. 7.
    Gilbert W. 1986. Origin of life: The RNA world. Nature. 319, 618.CrossRefGoogle Scholar
  8. 8.
    The RNA World, 2nd ed. Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Lab. Press, 1999.Google Scholar
  9. 9.
    Ahlquist P. 2002. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science. 296, 1270–1273.Google Scholar
  10. 10.
    Spirin A.S. 1960. On macromolecular structure of native high-polymer ribonucleic acid in solution. J. Mol. Biol. 2, 436–446.Google Scholar
  11. 11.
    Vasiliev V.D., Selivanova O.M., Koteliansky V.E. 1978. Specific self-packing of the ribosomal 16S RNA. FEBS Lett. 95, 273–276.CrossRefPubMedGoogle Scholar
  12. 12.
    Vasiliev V.D., Serdyuk I.N., Gudkov A.T., Spirin A.S. 1986. Self-organization of ribosomal RNA. In: Structure, Function, and Genetics of Ribosomes. Eds. Hardesty B., Kramer G. N.Y.: Springer, pp. 128–142.Google Scholar
  13. 13.
    Belozersky A.N., Spirin A.S. 1958. A correlation between the compositions of the deoxyribonucleic and ribonucleic acids. Nature. 182, 11–112.Google Scholar
  14. 14.
    Brenner S., Jacob F., Meselson M. 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 190, 576–581.Google Scholar
  15. 15.
    Gros F., Hiatt H., Gilbert W., Kurland C.G., Riseborough R.W., Watson J.D. 1961. Unstable ribonucleic acid revealed by pulse labeling of Escherichia coli. Nature. 190, 581–585.Google Scholar
  16. 16.
    Wimberly B.T., Brodersen D.E., Clemons W.M., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T., Ramakrishnan V. 2000. Structure of the 30S ribosomal subunit. Nature. 407, 327–339.Google Scholar
  17. 17.
    Ban N., Nissen P., Hansen J., Moore P., Steitz T.A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science. 289, 905–920.Google Scholar
  18. 18.
    Yusupov M.M., Yusupova G.Zh., Baucom A., Lieberman K., Earnest T.N., Cate J.H.D., Noller H.F. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science. 292, 883–896.Google Scholar
  19. 19.
    Cundliffe E. 1986. Involvement of specific portions of ribosomal RNA in defined ribosomal functions: A study utilizing antibiotics. In: Structure, Function, and Genetics of Ribosomes. Eds. Hardesty B., Kramer G. N.Y.: Springer, pp. 586–604.Google Scholar
  20. 20.
    Fourmy D., Recht M.I., Blanchard S.C., Puglisi J.D. 1996. Structure of the A site of E. coli 16S rRNA complexed with an aminoglycoside antibiotic. Science. 274, 1364–1371.Google Scholar
  21. 21.
    Puglisi J.D., Williamson J.R. 1999. RNA interaction with small ligands and peptides. In: The RNA World, 2nd ed. Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Lab. Press, pp. 403–425.Google Scholar
  22. 22.
    Ellington A., Szostak J. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818–822.CrossRefPubMedGoogle Scholar
  23. 23.
    Tuerk C., Gold L. 1990. Systematic evolution of ligands by exponential enrichment. Science. 249, 505–510.PubMedGoogle Scholar
  24. 24.
    Gold L., Polisky B., Uhlenbeck O., Yarus M. 1995. Diversity of oligonucleotide functions. Ann. Rev. Biochem. 64, 763–797.CrossRefPubMedGoogle Scholar
  25. 25.
    Cech T.R., Golden B.L. 1999. Building a catalytic active site using only RNA. In: The RNA World, 2nd ed. Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Lab. Press, pp. 321–347.Google Scholar
  26. 26.
    Nissen P., Hansen J., Ban N., Moore P.B., Steitz T.A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science. 289, 920–930.Google Scholar
  27. 27.
    Ferris J.P., Ertem G. 1993. Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc. 115, 12270–12275.CrossRefPubMedGoogle Scholar
  28. 28.
    Ferris J.P., Hill A.R., Liu R., Orgel L.E. 1996. Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 381, 59–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Joyce G.F. 1989. RNA evolution and the origins of life. Nature. 338, 217–224.Google Scholar
  30. 30.
    Orgel L.E. 1998. The origin of life: A review of facts and speculations. Trends Biochem. Sci. 23, 491–495.CrossRefPubMedGoogle Scholar
  31. 31.
    Chetverina H.V., Chetverin A.B. 1993. Cloning of RNA molecules in vitro. Nucleic Acids Res. 21, 2349–2353.PubMedGoogle Scholar
  32. 32.
    Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. 1999. Spontaneous rearrangements in RNA sequences. FEBS Lett. 450, 89–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Doudna J.A., Szostak J.W. 1989. RNA-catalysed synthesis of complementary-strand RNA. Nature. 339, 519–522.Google Scholar
  34. 34.
    Doudna J.A., Couture S., Szostak J.W. 1991. A multi-subunit ribozyme that is a catalyst of and template for complementary strand RNA synthesis. Science. 251, 1605–1608.Google Scholar
  35. 35.
    Bartel D.P., Szostak J.W. 1993. Isolation of new ribozymes from a large pool of random sequences. Science. 261, 1411–1418.PubMedGoogle Scholar
  36. 36.
    Doudna J.A., Usman N., Szostak J.W. 1993. Ribosome-catalyzed primer extension by trinucleotides: A model for the RNA-catalyzed replication of RNA. Biochemistry. 32, 2111–2115.CrossRefPubMedGoogle Scholar
  37. 37.
    Ekland E.H., Bartel D.P. 1996. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature. 382, 373–376.Google Scholar
  38. 38.
    Johnston W.K., Unrau P.J., Lawrence M.S., Glasner M.E., Bartel D.P. 2001. RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science. 292, 1319–1325.CrossRefPubMedGoogle Scholar
  39. 39.
    Gilbert W., de Souza S.J. 1999. Introns and the RNA world. In: The RNA World, 2nd ed. Eds. Gesteland R.F., Cech T.R., Atkins J.F. N.Y.: Cold Spring Harbor Lab. Press, pp. 221–231.Google Scholar
  40. 40.
    Szostak J.W. 1999. Constrains on the sizes of the earliest cells. Size Limits of Very Small Microorganisms. Proc. of a Workshop, Washington, D.C.: National Academy Press, 120–125.Google Scholar
  41. 41.
    Oparin A.I. 1924. Proiskhozhdenie zhizni (The Origin of Life). Moscow: Moskovskii Rabochii.Google Scholar
  42. 42.
    Chetverin A.B., Chetverina H.V., Munishkin A.V. 1991. On the nature of spontaneous RNA synthesis by Qβ replicase. J. Mol. Biol. 222, 3–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Robertson D.L., Joyce G.F. 1990. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 344, 467–468.Google Scholar
  44. 44.
    Woese C.R. 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA. 95, 6854–6859.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. S. Spirin
    • 1
    • 2
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations