Molecular Biology

, Volume 39, Issue 3, pp 372–386 | Cite as

Latent Periodicity of Serine/Threonine and Tyrosine Protein Kinases and Other Protein Families

  • A. A. Laskin
  • N. A. Kudryashov
  • K. G. Skryabin
  • E. V. Korotkov
Bioinformatics

Abstract

A method of noise decomposition has been developed. This method allows for the identification of a latent periodicity with symbol insertions and deletions that is specific for all or most amino acid sequences belonging to the same protein family or protein domain. The latent periodicity has been identified in catalytic domains of 85% of serine/threonine and tyrosine protein kinases. Similar results have been obtained for 22 other protein families. The possible role of latent periodicity in protein families is discussed.

Key words

latent periodicity alignment profile repeat protein kinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., Wheeler D.L. 2000. GenBank. Nucleic Acids Res. 28, 15–18.PubMedGoogle Scholar
  2. 2.
    Stoesser G., Baker W., van den Broek A., Camon E., Garcia-Pastor M., Kanz C., Kulikova T., Lombard V., Lopez R., Parkinson H., Redaschi N., Sterk P., Stoehr P., Tuli M.A. 2001. The EMBL nucleotide sequence database. Nucleic Acids Res. 29, 17–21.PubMedGoogle Scholar
  3. 3.
    Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., et al. 2000. The genome sequence of Drosophila melanogaster. Science. 287, 2185–2195.PubMedGoogle Scholar
  4. 4.
    Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., et al. 2001. The sequence of the human genome. Science. 291, 1304–1351.CrossRefPubMedGoogle Scholar
  5. 5.
    Ohno S. 1970. Evolution by Gene Guplication. Berlin: Springer.Google Scholar
  6. 6.
    Ohno S., Epplen J.T. 1983. The primitive code and repeats of base oligomers as the primordial protein-encoding sequence. Proc. Natl. Acad. Sci. USA. 80, 3391–3395.PubMedGoogle Scholar
  7. 7.
    Ohno S. 1984. Repeats of base oligomers as the primordial coding sequences of the primeval earth and their vestiges in modern genes. J. Mol. Evol. 20, 313–321.PubMedGoogle Scholar
  8. 8.
    Heringa J. 1994. The evolution and recognition of protein sequence repeats. Comput. Chem. 18, 233–243.PubMedGoogle Scholar
  9. 9.
    Heringa J. 1998. Detection of internal repeats: How common are they? Curr. Opin. Struct. Biol. 8, 338–345.PubMedGoogle Scholar
  10. 10.
    Heringa J. 1998. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Curr. Opin. Struct. Biol. 8, 338–345.PubMedGoogle Scholar
  11. 11.
    Benson G. 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580.PubMedGoogle Scholar
  12. 12.
    Benson G. 1997. Sequence alignment with tandem duplication. J. Comput. Biol. 4, 351–367.PubMedGoogle Scholar
  13. 13.
    Heger A., Holm L. 2000. Rapid automatic detection and alignment of repeats in protein sequences. Proteins. 41, 224–237.PubMedGoogle Scholar
  14. 14.
    Andrade M.A., Ponting C.P., Gibson T.J., Bork P. 2000. Homology-based method for identification of protein repeats using statistical significance estimates. J. Mol. Biol. 298, 521–537.PubMedGoogle Scholar
  15. 15.
    Taylor W.R., Heringa J., Baud F., Flores T.P. 2002. A Fourier analysis of symmetry in protein structure. Protein Eng. 15, 79–89.PubMedGoogle Scholar
  16. 16.
    Lobzin V.V., Chechetkin V.R. 2000. Order and correlations in genomic DNA sequences. The spectral approach. Usp. Fiz. Nauk. 170, 57–81.Google Scholar
  17. 17.
    Dodin G., Vandergheynst P., Levoir P., Cordier C., Marcourt L. 2000. Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. J. Theor. Biol. 206, 323–326.PubMedGoogle Scholar
  18. 18.
    Jackson J.H., George R., Herring P.A. 2000. Vectors of Shannon information from Fourier signals characterizing base periodicity in genes and genomes. Biochem. Biophys. Res. Commun. 268, 289–292.PubMedGoogle Scholar
  19. 19.
    Rackovsky S. 1998. Hidden sequence periodicities and protein architecture. Proc. Natl. Acad. Sci. USA. 95, 8580–8584.PubMedGoogle Scholar
  20. 20.
    Chechetkin V.R., Lobzin V.V. 1998. Nucleosome units and hidden periodicities in DNA sequences. J. Biomol. Struct. Dynamics. 15, 937–947.Google Scholar
  21. 21.
    Coward E., Drablos F. 1998. Detecting periodic patterns in biological sequences. Bioinformatics. 14, 498–507.CrossRefPubMedGoogle Scholar
  22. 22.
    Voss R.F. 1992. Evolution of long range fractal correlations and 1/f noise in DNA base sequences. Phys. Rev. Lett. 25, 3805–3808.Google Scholar
  23. 23.
    Silverman B.D., Linsker R. 1996. A measure of DNA periodicity. J. Theor. Biol. 118, 295–300.Google Scholar
  24. 24.
    McLachlan A.D. 1993. Multichannel Fourier analysis of patterns in protein sequences. J. Phys. Chem. 97, 3000–3006.Google Scholar
  25. 25.
    Korotkov E.V., Korotkova M.A. 1995. DNA regions with latent periodicity in some human clones. DNA Sequence. 5, 353–358.PubMedGoogle Scholar
  26. 26.
    Korotkov E.V., Korotkova M.A., Tulko J.S. 1997. Latent sequence periodicity of some oncogenes and DNA-binding protein genes. CABIOS. 13, 37–44.PubMedGoogle Scholar
  27. 27.
    Korotkova M.A., Korotkov E.V., Rudenko V.M. 1999. Latent periodicity of protein sequences. J. Mol. Modelling. 5, 103–115.Google Scholar
  28. 28.
    Chaley M.B., Korotkov E.V., Skryabin K.G. 1999. Method reavealing latent periodicity of the nucleotide sequences modified for a case of small samples. DNA Res. 6, 153–163.PubMedGoogle Scholar
  29. 29.
    Korotkov E.V., Korotkova M.A., Kudryashov N.A. 2003. Method of information decomposition of symbolical texts. Phys. Lett. A. 312, 198–210.Google Scholar
  30. 30.
    George R.A., Heringa J. 2000. The REPRO server: Finding protein internal sequence repeats through the Web. Trends Biochem. Sci. 25, 515–517.PubMedGoogle Scholar
  31. 31.
    Gribskov M., McLachlan A.D., Eisenberg D.B. 1987. Profile analysis: Detection of distantly related proteins. Proc. Natl Acad. Sci. USA. 84, 4355–4358.PubMedGoogle Scholar
  32. 32.
    Karlin S., Dembo A., Kawabata T. 1990. Statistical composition of high scoring segments from molecular sequences. Ann. Stat. 18, 571–581.Google Scholar
  33. 33.
    Schmidt J.P. 1998. An information theoretic view of gapped and other alignments. Proc. Pac. Symp. Biocomput. 561–572.Google Scholar
  34. 34.
    Wilbur W.J., Neuwald A.F. 2000. A theory of information with special application to search problems. Comput. Chem. 24, 33–42.PubMedGoogle Scholar
  35. 35.
    Laskin A.A., Chalei M.B., Korotkov E.V., Kudryashov N.A. 2003. Identification of NAD-binding sites in amino acid sequences of different proteins. Mol. Biol. 37, 663–674.Google Scholar
  36. 36.
    Needleman S.B., Wunsch C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.PubMedGoogle Scholar
  37. 37.
    Bairoch A., Apweiler R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 25, 45–48.Google Scholar
  38. 38.
    Taylor S.S., Radzio-Andzelm E., Hunter T. 1995. How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase. FASEB J. 9, 1255–1266.PubMedGoogle Scholar
  39. 39.
    Kentrup H., Becker W., Heukelbach J., Wilmes A., Schurmann A., Huppertz C., Kainulainen H., Joost H.G. 1996. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J. Biol. Chem. 271, 3488–3495.PubMedGoogle Scholar
  40. 40.
    Hanks S.K., Quinn A.M., Hunter T. 1988. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science. 241, 42–52.PubMedGoogle Scholar
  41. 41.
    Hunter T. 1991. Protein kinase classification. Methods Enzymol. 200, 33–37.Google Scholar
  42. 42.
    Taylor S.S., Knighton D.R., Zheng J., Ten Eyck L.F., Sowadski J.M. 1992. Structural framework for the protein kinase family. Annu. Rev. Cell Biol. 8, 429–462.PubMedGoogle Scholar
  43. 43.
    Goldsmith E.J., Cobb M.H. 1994. Protein kinases. Curr. Opinion Struct. Biol. 4, 833–840.Google Scholar
  44. 44.
    Taylor S.S., Radzio-Andzelm E. 1994. Three protein kinase structures define a common motif. Structure. 2, 345–355.PubMedGoogle Scholar
  45. 45.
    Kruse M., Muller I.M., Muller W.E. 1997. Early evolution of metazoan serine/threonine and tyrosine kinases: Identification of selected kinases in marine sponges. Mol. Biol. Evol. 14, 1326–1334.PubMedGoogle Scholar
  46. 46.
    Muller W.E., Kruse M., Blumbach B., Skorokhod A., Muller M.I. 1999. Gene structure and function of tyrosine kinases in the marine sponge Geodia cydonium: Autapomorphic characters in Metazoa. Gene. 238, 179–193.PubMedGoogle Scholar
  47. 47.
    Chaley M.B., Korotkov E.V., Kudryashov N.A. 2003. Latent periodicity of 21 bases typical for MCP II gene is widely present in various bacterial genes. DNA Sequence. 14, 37–52.Google Scholar
  48. 48.
    Ruddon R.W., Bedows E. 1997. Assisted protein folding. J. Biol. Chem. 272, 3125–3128.PubMedGoogle Scholar
  49. 49.
    Thulasiraman V., Yang C.F., Frydman J. 1999. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85–95.PubMedGoogle Scholar
  50. 50.
    Knarr G., Modrow S., Todd A., Gething M.J., Buchner J. 1999. BiP-binding sequences in HIV gp160. Implications for the binding specificity of bip. J. Biol. Chem. 274, 29850–29857.PubMedGoogle Scholar
  51. 51.
    Takenaka I.M., Leung S.M., McAndrew S.J., Brown J.P., Hightower L.E. 1995. Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J. Biol. Chem. 270, 19839–19844.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. A. Laskin
    • 1
    • 2
  • N. A. Kudryashov
    • 2
  • K. G. Skryabin
    • 1
  • E. V. Korotkov
    • 1
    • 2
  1. 1.Bioengineering CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Physical Engineering InstituteMoscowRussia

Personalised recommendations