Mathematical Notes

, Volume 80, Issue 3–4, pp 435–441 | Cite as

Automatic continuity of pseudocharacters on semisimple Lie groups

  • A. I. Shtern


It is proved that an arbitrary pseudocharacter on a semisimple Lie group is continuous.

Key words

semisimple Lie group Hermitian symmetric Lie group pseudocharacter quasicharacter Hermitian symmetric Lie group amenable group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Banach, Théorie des opérations linéaires, Monograf. Mat., PWN, Warszaw, 1932.zbMATHGoogle Scholar
  2. 2.
    J. W. Baker and B. M. Lashkarizadeh, “Representations and positive definite functions on topological semigroups,” Glasgow Math. J., 38 (1996), no. 1, 99–111.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Exel and M. Laca, “Continuous Fell bundles associated to measurable twisted actions,” Proc. Amer. Math. Soc., 125 (1997), no. 3, 795–799.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. A. Gaal, Linear Analysis and Representation Theory, Springer-Verlag, New York-Heidelberg, 1973.zbMATHGoogle Scholar
  5. 5.
    C. C. Moore, “Group extensions and cohomology for locally compact groups. III,” Trans. Amer. Math. Soc., 221 (1976), no. 1, 1–33.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. T. Moore, Measurable, Continuous and Smooth Vectors for Semi-Groups and Group Representations, Mem. Amer. Math. Soc., vol. 78, Amer. Math. Soc., Providence, RI, 1968.Google Scholar
  7. 7.
    K.-H. Neeb, “On a theorem of S. Banach,” J. Lie Theory, 7 (1997), no. 2, 293–300.zbMATHMathSciNetGoogle Scholar
  8. 8.
    K.-H. Neeb, D. Pickrell, “Supplements to the papers entitled: “On a theorem of S. Banach” and “The separable representations of U(H)”,” J. Lie Theory, 10 (2000), no. 1, 107–109.zbMATHMathSciNetGoogle Scholar
  9. 9.
    V. Pestov, “Review of [7],” Math. Review 98i:22003 (1998).Google Scholar
  10. 10.
    Z. Sasvari, Positive Definite and Definitizable Functions, Akademie Verlag, Berlin, 1994.zbMATHGoogle Scholar
  11. 11.
    A. I. Shtern, “Continuity of Banach representations in terms of point variations,” Russian J. Math. Phys., 9 (2002), no. 2, 250–252.zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. I. Shtern, “Criteria for weak and strong continuity of representations of topological groups in Banach spaces,” Mat. Sb. [Sb. Math.], 193 (2002), no. 9, 139–156.zbMATHMathSciNetGoogle Scholar
  13. 13.
    A. I. Shtern, “Continuity criteria for finite-dimensional representations of compact connected groups,” Adv. Stud. Contemp. Math. (Kyungshang), 6 (2003), no. 2, 141–156.zbMATHMathSciNetGoogle Scholar
  14. 14.
    A. I. Shtern, “Continuity conditions for finite-dimensional representations of some compact totally disconnected groups,” Adv. Stud. Contemp. Math. (Kyungshang), 8 (2004), no. 1, 13–22.zbMATHMathSciNetGoogle Scholar
  15. 15.
    A. I. Shtern, “Criteria for the continuity of finite-dimensional representations of connected locally compact groups,” Mat. Sb. [Sb. Math.], 195 (2004), no. 9, 145–159.zbMATHMathSciNetGoogle Scholar
  16. 16.
    A. I. Shtern, “A continuity criterion for finite-dimensional representations of locally compact groups,” Mat. Zametki [Math. Notes], 75 (2004), no. 6, 951–953.zbMATHMathSciNetGoogle Scholar
  17. 17.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, vol. I, 2nd ed., Nauka, Moscow, 1975.Google Scholar
  18. 18.
    A. I. Shtern, “Quasireprezentations and pseudorepresentations,” Funktsional. Anal. i Prilozhen. [Funct. Anal. Appl.], 25 (1991), no. 2, 70–73.zbMATHMathSciNetGoogle Scholar
  19. 19.
    A. I. Shtern, “Quasi-symmetry. I,” Russian J. Math. Phys., 2 (1994), no. 3, 353–382.zbMATHMathSciNetGoogle Scholar
  20. 20.
    A. I. Shtern, “Stability of representations and pseudocharacters,” in: Lomonosov Readings, Moscow State University, Moscow, 1983.Google Scholar
  21. 21.
    C. Bavard, “Longueur stable des commutateurs,” L’Enseignement Math., 37 (1991), 109–150.zbMATHMathSciNetGoogle Scholar
  22. 22.
    M. Gromov, “Positive curvature, macroscopic dimension, spectral gaps and higher signatures,” in: Functional Analysis on the Eve of the 21st Century, vol. II, Birkhäuser, Boston, MA, 1996, pp. 1–213.Google Scholar
  23. 23.
    J. F. Manning, “Geometry of pseudocharacters,” Geometry and Topology, 9 (2005), 1147–1185.zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. I. Shtern, Remarks on Pseudocharacters and the Real Continuous Bounded Cohomology of Connected Locally Compact Groups, Sfb 288 Preprint no. 289, 1997.Google Scholar
  25. 25.
    A. I. Shtern, “Structure properties and the bounded real continuous 2-cohomology of locally compact groups,” Funktsional. Anal. i Prilozhen. [Funct. Anal. Appl.], 35 (2001), no. 4, 67–80.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. I. Shtern, “Bounded continuous real 2-cocycles on simply connected simple Lie groups and their applications,” Russian J. Math. Phys., 8 (2001), no. 1, 122–133.zbMATHMathSciNetGoogle Scholar
  27. 27.
    A. I. Shtern, “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups,” Ann. Global Anal. Geom., 20 (2001), 199–221.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. I. Shtern, “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional,” Acta Appl. Math., 68 (2001), no. 1–3, 105–121.zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    J.-M. Gambaudo and É. Ghys, “Commutators and diffeomorphisms of surfaces,” Ergodic Theory Dynam. Systems, 24 (2004), no. 5, 1591–1617.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Biran, M. Entov, and L. Polterovich, “Calabi quasimorphisms for the symplectic ball,” Commun. Contemp. Math., 6 (2004), no. 5, 793–802.zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    D. Kotschick and S. Morita, “Signatures of foliated surface bundles and the symplectomorphism groups of surfaces,” Topology, 44 (2005), no. 1, 131–149.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    D. McDuff, “A survey of the topological properties of symplectomorphism groups,” in: Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 173–193.Google Scholar
  33. 33.
    A. I. Shtern, “Deformation of irreducible unitary representations of a discrete series of Hermitian symmetric simple Lie groups in the class of pure pseudo-representations,” Mat. Zametki [Math. Notes], 73 (2003), no. 3, 478–480.zbMATHMathSciNetGoogle Scholar
  34. 34.
    A. I. Shtern, “Projective representations and pure pseudorepresentations of Hermitian symmetric simple Lie groups,” Mat. Zametki [Math. Notes], 77 (2005), no. 6, 908–913.MathSciNetGoogle Scholar
  35. 35.
    D. Kotschick, “What is ... a quasi-morphism?,” Notices Amer. Math. Soc., 51 (2004), no. 2, 208–209.zbMATHMathSciNetGoogle Scholar
  36. 36.
    A. I. Shtern, “Triviality and continuity of pseudocharacters and pseudorepresentations,” Russian J. Math. Phys., 5 (1998), no. 1, 135–138.MathSciNetGoogle Scholar
  37. 37.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962; Russian transl.: Mir, Moscow, 1964.zbMATHGoogle Scholar
  38. 38.
    A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, RI, 1988.zbMATHGoogle Scholar
  39. 39.
    K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, de Gruyter, Berlin, 1998.zbMATHGoogle Scholar
  40. 40.
    M. A. Naimark and A. I. Stern (Shtern), Theory of Group Representations, Springer-Verlag, New York-Heidelberg-Berlin, 1982.Google Scholar
  41. 41.
    A. I. Shtern, “Automatic continuity of pseudocharacters on Hermitian symmetric semisimple Lie groups,” Adv. Stud. Contemp. Math. (Kyungshang) (2006) (to appear).Google Scholar
  42. 42.
    D. Kazhdan, “On ε-representations,” Israel J. Math., 43 (1982), no. 4, 315–323.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. I. Shtern
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscow

Personalised recommendations