Mathematical Notes

, Volume 79, Issue 3–4, pp 356–365 | Cite as

Combinational properties of sets of residues modulo a prime and the Erdős—Graham problem

  • A. A. Glibichuk


Consider an arbitrary ε > 0 and a sufficiently large prime p > 2. It is proved that, for any integer a, there exist pairwise distinct integers x 1, x 2, ..., x N , where N = 8([1/ε + 1/2] + 1)2 such that 1 ≤ x i p ε, i = 1, ..., N, and
$$a \equiv x_1^{ - 1} + \cdots + x_N^{ - 1} (\bmod p)$$
, where x i −1 is the least positive integer satisfying x i −1 x i ≡ 1 (modp). This improves a result of Sparlinski.

Key words

set of residues modulo a prime Erdős—Graham problem symmetric set antisymmetric set Cauchy—Davenport theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Erdős and R. L. Graham, Old and New Problems and Results in Combinational Number Theory, Monograph. Enseign. Math., vol. 28, 1980.Google Scholar
  2. 2.
    E. S. Croot, “On some questions of Erdős and Graham about Egyptian fractions,” Mathematika, 46 (1999), 359–372.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    I. E. Sparlinski, “On a question of Erdős and Graham,” Arch. Math., 78 (2002), 445–448.CrossRefGoogle Scholar
  4. 4.
    A. A. Karatsuba, “Distribution of inverse values in a residue ring modulo a given number,” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 333 (1993), no. 2, 138–139.zbMATHGoogle Scholar
  5. 5.
    A. A. Karatsuba, “Fractional parts of functions of a special form,” Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 59 (1995), no. 4, 61–80.zbMATHMathSciNetGoogle Scholar
  6. 6.
    A. A. Karatsuba, “Analogues of incomplete Kloosterman sums and their applications,” Tatra Mountain Math. Publ., 11 (1997), 89–120.zbMATHMathSciNetGoogle Scholar
  7. 7.
    E. S. Croot, “Reciprocal power sums modulo a prime,” in: E-print math.NT/0403360, 2004.Google Scholar
  8. 8.
    J. Bourgain and N. Katz, and T. Tao, “A sum-product estimate in finite fields and their applications,” in: E-print math.CO/0301343, 2003.Google Scholar
  9. 9.
    I. D. Shkredov, “On some additive problems related to the exponential function” Uspekhi Mat. Nauk [Russian Math. Surveys], 58 (2003), no. 4, 165–166.zbMATHMathSciNetGoogle Scholar
  10. 10.
    A. A. Karatsuba, “Additive congruences,” Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.], 61 (1997), no. 2, 81–94.zbMATHMathSciNetGoogle Scholar
  11. 11.
    A. A. Karatsuba, “On regular sets in remainder classes,” Mat. Zametki [Math. Notes], 64 (1998), no. 2, 224–228.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Glibichuk
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations