Mathematical Notes

, Volume 79, Issue 1–2, pp 244–253

The Heun Equation and the Darboux Transformation

  • Yu. N. Sirota
  • A. O. Smirnov
Article

Abstract

In this paper, we study the Darboux transformation of the Darboux-Treibich-Verdier equation. On the basis of this transformation, we construct a generalization of the Darboux transformation to the case of the Heun equation and to other linear ordinary differential equations of second order. Examples are given.

Key words

Heun equation Darboux transformation Darboux-Treibich-Verdier equation linear ordinary differential equations of second order the Schrodinger operator Bessel equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Matveev and V. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, 1991, pp. 1–120.Google Scholar
  2. 2.
    I. A. Dynnikov and S. P. Novikov, “Discrete spectral symmetries of small-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds,” Uspekhi Mat. Nauk [Russian Math. Surveys], 52 (1997), no. 5, 175–234.MathSciNetGoogle Scholar
  3. 3.
    G. Darboux, Lecons sur la theorie generale des surfaces. II, 2 ed., Gauthier-Villars, Paris, 1915.Google Scholar
  4. 4.
    V. B. Matveev, “Positons: slowly decreasing analogs of solitons,” Teoret. Mat. Fiz. [Theoret. and Math. Phys.], 131 (2002), no. 1, 44–61.MATHMathSciNetGoogle Scholar
  5. 5.
    M. Humi, “Fractional Darboux transformations,” in: E-print math-ph/0202020, 2002.Google Scholar
  6. 6.
    D. J. Fernandez, B. Mielnik, and J. O. Rosas-Ortiz, and B. F. Samsonov, “Nonlocal SUSE deformations of periodic potentials,” in: E-print quant-ph/0303051, 2003.Google Scholar
  7. 7.
    J. Weiss, “Period fixed points of Backlund transformations and the KdV equation,” J. Math. Phys., 27 (1986), no. 11, 2647–2656; 28 (1987), no. 9, 2025–2039.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    A. P. Veselov and A. B. Shabat, “The dressing chain and the spectral theory of the Schrodinger operator,” Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 27 (1993), no. 2, 1–21.MathSciNetGoogle Scholar
  9. 9.
    G. Darboux, “Sur une equation lineaire,” C. R. Acad. Sci. Paris, 44 (1882), no. 25, 1645–1648.Google Scholar
  10. 10.
    A. Treibich and J.-L. Verdier, “Solitons elliptiques,” in: Progr. Math. (The Grothendieck Festschrift, vol. 3), vol. 88, Birkhauser, Boston, MA, 1990, pp. 437–480.Google Scholar
  11. 11.
    A. Treibich and J.-L. Verdier, “Revetements tangentiels et sommes de 4 nombres triangulaires,” C. R. Acad. Sci. Paris. Ser. I, 311 (1990), 51–54.MathSciNetGoogle Scholar
  12. 12.
    A. Treibich, “Revetements exceptionnels et sommes de 4 nombres triangulaires,” Duke Math. J., 68 (1992), 217–236.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    E. D. Belokolos, A. I. Bobenko, V. B. Matveev, and V. Z. Enol'skii, “Algebro-geometrical principles of superposition of finite-gap solutions of integrable nonlinear equations,” Uspekhi Mat. Nauk [Russian Math. Surveys], 41 (1986), no. 2, 3–42.MathSciNetGoogle Scholar
  14. 14.
    E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii (Enol'skii), and A. R. Its, and V. B. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations, Springer Ser. Nonlinear Dynamics, Springer-Verlag, Berlin-Heidelberg-New York, 1994.Google Scholar
  15. 15.
    E. D. Belokolos and V. Z. Enol'skii, “Verdier elliptic solitons and the Weierstrass reduction theory,” Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 23 (1989), no. 1, 57–58.MathSciNetGoogle Scholar
  16. 16.
    E. D. Belokolos and V. Z. Enol'skii (Enol'skii), “Reduction of the theta function and elliptic finite-gap potentials,” Acta Appl. Math., 36 (1994), 87–117.CrossRefMathSciNetGoogle Scholar
  17. 17.
    A. O. Smirnov, “The elliptic solutions of the Korteweg-de Vries equation,” Mat. Zametki [Math. Notes], 45 (1989), no. 6, 66–73.MATHMathSciNetGoogle Scholar
  18. 18.
    A. O. Smirnov, “The elliptic solutions of integrable nonlinear equations,” Mat. Zametki [Math. Notes], 46 (1989), no. 5, 100–102.MATHMathSciNetGoogle Scholar
  19. 19.
    A. O. Smirnov, “Finite-gap elliptic solutions of the KdV equation,” Acta Appl. Math., 36 (1994), 125–166.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow, 1970.Google Scholar
  21. 21.
    V. I. Inozemtsev, “Lax representation with spectral parameter on torus for integrable particle systems,” Lett. Math. Phys., 17 (1989), 11–17.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    K. Takemura, “The Heun equation and the Calogero-Moser-Sutherland system I: the Bethe Ansatz method,” Comm. Math. Phys., 235 (2003), 467–494.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    K. Takemura, “On the Inozemtsev model,” in: E-print math-ph/0312037, 2003.Google Scholar
  24. 24.
    A. O. Smirnov, “Elliptic solitons and the Heun equation,” CRM Proc. Lecture Notes, 32 (2002), 287–305.MATHGoogle Scholar
  25. 25.
    A. O. Smirnov, “Finite-gap solutions of the Fuchsian equations,” in: E-print math.CA/0310465, 2003.Google Scholar
  26. 26.
    E. Kamke, E. Kamke, Differentialgleichungen, Losungsmethoden und Losungen, Leipzig, 1959; Russian translation: Fizmatgiz, Moscow, 1961.Google Scholar
  27. 27.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York-Toronto-London, 1953–55. Russian translation: Fizmatgiz, Moscow, 1967.Google Scholar
  28. 28.
    Heun's Differential Equations (A. Ronveaux, Ed.), Oxford University Press, Oxford, 1995.Google Scholar
  29. 29.
    S. Yu. Slavyanov and W. Lay, Special Functions, Oxford University Press, Oxford, 2000.Google Scholar
  30. 30.
    S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on the Analysis of Singularities [in Russian] Nevskii Dialekt, St. Petersburg., 2002.Google Scholar
  31. 31.
    Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (M. Abramowitz and I. Stegun, Eds.) National Bureau of Standards, Washington, D.C., 1964. Russian translation: Nauka, Moscow, 1979.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. N. Sirota
    • 1
  • A. O. Smirnov
    • 2
  1. 1.A. I. Gertsen Russian State Pedagogical UniversityRussia
  2. 2.St. Petersburg State University of Aerospace EngineeringSt. PetersburgRussia

Personalised recommendations