Mathematical Notes

, Volume 79, Issue 1–2, pp 151–156 | Cite as

Refinement of Vahlen's Theorem for Minkowski Bases of Three-Dimensional Lattices

  • M. O. Avdeeva
  • V. A. Bykovskii


In the paper, the analog of Vahlen's theorem for Minkowski bases of three-dimensional lattices is sharpened.

Key words

Vahlen's theorem Minkowski basis Voronoi basis complete lattice continued fraction three-dimensional lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Voronoi, Collected Works [in Russian], vol. 1, Kiev, 1952.Google Scholar
  2. 2.
    A. Ya. Khinchin, Continued Fractions [in Russian], Moscow, 1978.Google Scholar
  3. 3.
    J. W. S. Cassels, An Introduction to the Geometry of Numbers, Cambridge Univ. Press, Cambridge, 1959.Google Scholar
  4. 4.
    V. A. Bykovskii, “Vahlen's theorem for two-dimensional convergents,” Mat. Zametki [Math. Notes], 66 (1999), no. 1, 30–37.MATHMathSciNetGoogle Scholar
  5. 5.
    M. O. Avdeeva and V. A. Bykovskii, “An analog of Vahlen's theorem for joint approximations of a pair of numbers,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 194 (2003), no. 7, 4–14.MathSciNetGoogle Scholar
  6. 6.
    H. Minkowski, “Generalisation de la theorie des fractions continues,” Ann. Sci. Ecole Norm. Sup.(3), 13 (1896), no. 2, 41–60.MATHMathSciNetGoogle Scholar
  7. 7.
    V. A. Bykovskii and O. A. Gorkusha, “Minimum bases of three-dimensional lattices,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 192 (2001), no. 2, 57–66.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. O. Avdeeva
    • 1
    • 2
  • V. A. Bykovskii
    • 2
  1. 1.Khabarovsk State Pedagogical UniversityRussia
  2. 2.Institute of Applied Mathematics Khabarovsk Section, Far East DivisionRussian Academy of SciencesRussia

Personalised recommendations