Mathematical Notes

, Volume 77, Issue 5–6, pp 843–854

Stepwise Gauge Equivalence of Differential Operators

  • S. P. Khekalo


In this paper, we study the relation between the notion of gauge equivalence and solutions of certain systems of nonlinear partial differential equations. This relation is based on stepwise gauge equivalence.

Key words

differential operator gauge equivalence system of nonlinear partial differential equations Huygens principle Hadamard ansatz Laplace operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. Yu. Berest and A. P. Veselov, “The Huygens principle and integrability,” Uspekhi Mat. Nauk [Russian Math. Surveys], 49 (1994), no. 6, 8–78.Google Scholar
  2. 2.
    Y. Berest, “The problem of lacunas and analysis on root systems,” Trans. Amer. Math. Soc., 352 (2000), no. 8, 3743–3776.CrossRefGoogle Scholar
  3. 3.
    K. L. Stellmacher, “Ein Beispeil einer Huygennchen Differentialgleichung,” Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl., 10 (1953), 133–138.Google Scholar
  4. 4.
    J. E. Lagnese and K. L. Stellmacher, “A method of generating classes of Huygens’ operators,” J. Math. Mech., 17 (1967), no. 5, 461–472.Google Scholar
  5. 5.
    Y. Berest and Y. Molchanov, “Fundamental solution for partial differential equations with reflection group invariance,” J. Math. Phys., 36 (1995), no. 8, 4324–4339.CrossRefGoogle Scholar
  6. 6.
    Yu. Yu. Berest and A. P. Veselov, “Hadamard’s problem and Coxeter groups: new examples of Huygens equations,” Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.], 28 (1994), no. 1, 3–15.CrossRefGoogle Scholar
  7. 7.
    Y. Berest, “Hierarchies of Huygens’ operators and Hadamard’s conjecture,” Acta Appl. Math., 53 (1998), 125–185.CrossRefGoogle Scholar
  8. 8.
    V. M. Babich, “The Hadamard ansatz, its analogs, generalizations, and applications,” Algebra i Analiz [St. Petersbur Math. J.], 3 (1991), no. 5, 1–37.Google Scholar
  9. 9.
    G. Wilson, “Bispectral commutative ordinary differential operators,” J. Reine Angew. Math., 442 (1993), 177–204.Google Scholar
  10. 10.
    Y. Y. Berest and I. M. Loutsenko, “Huygens’ principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation,” Comm. Math. Phys., 190 (1997), 113–132.CrossRefGoogle Scholar
  11. 11.
    Y. Berest, “Solution of a restricted Hadamard problem on Minkowski spaces,” Comm. Pure. Appl. Math., 50 (1997), 1019–1052.CrossRefGoogle Scholar
  12. 12.
    S. Khekalo (S. P. Khekalo), “The gauge relation of differential operators and Huygens’ principle,” in: Day on Diffraction, Saint-Petersburg, 2002, pp. 32–34.Google Scholar
  13. 13.
    S. P. Khekalo, “Gauge equivalence of partial differential operators” in: International Conference on Differential Equations and Dynamical Systems [in Russian], Abstracts of Papers, Suzdal, 2002, pp. 138–140.Google Scholar
  14. 14.
    S. Khekalo (S. P. Kh’ekalo), “The gauge-related differential operators,” in: Day on Diffraction, Saint-Petersburg, 2003, pp. 42–43.Google Scholar
  15. 15.
    S. P. Khekalo, “Iso-Huygens deformations of homogeneous differential operators related to a special cone of rank three” Mat. Zametki [Math. Notes], 70 (2001), no. 6, 927–940.Google Scholar
  16. 16.
    S. P. Khekalo, “Riesz potentials in the space of rectangular matrices and the iso-Huygens deformation of the Cayley-Laplace operator,” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 376 (2001), no. 2, 168–170.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. P. Khekalo
    • 1
  1. 1.St. Petersburg Branch of V. A. Steklov Mathematics InstituteRussian Academy of SciencesRussia

Personalised recommendations